A122914 Decimal expansion of (1 + log(2*Pi))/2, the entropy of the standard normal distribution.
1, 4, 1, 8, 9, 3, 8, 5, 3, 3, 2, 0, 4, 6, 7, 2, 7, 4, 1, 7, 8, 0, 3, 2, 9, 7, 3, 6, 4, 0, 5, 6, 1, 7, 6, 3, 9, 8, 6, 1, 3, 9, 7, 4, 7, 3, 6, 3, 7, 7, 8, 3, 4, 1, 2, 8, 1, 7, 1, 5, 1, 5, 4, 0, 4, 8, 2, 7, 6, 5, 6, 9, 5, 9, 2, 7, 2, 6, 0, 3, 9, 7, 6, 9, 4, 7, 4, 3, 2, 9, 8, 6, 3, 5, 9, 5, 4, 1, 9, 7, 6, 2, 2, 0
Offset: 1
Examples
1.4189385332046727417803297364056176398613974736377834128171515404827656959...
Links
- Wikipedia, Normal distribution.
Programs
-
Mathematica
RealDigits[(1 + Log[2 Pi])/2, 10, 80]
Formula
Equals -zeta(0) - zeta'(0). - Peter Luschny, May 16 2020
Equals 1 + G'(1), where G(x) is the Barnes G-function. - Amiram Eldar, Jun 08 2022
Extensions
a(80) corrected by Georg Fischer, Jul 10 2021
Comments