A122930 Triangular array read by rows, based on the Zeckendorf expansion of n and containing the golden rectangle sequence A001629.
1, 0, 2, 1, 0, 6, 1, 2, 0, 15, 2, 2, 6, 0, 40, 3, 4, 6, 15, 0, 104, 5, 6, 12, 15, 40, 0, 273, 8, 10, 18, 30, 40, 104, 0, 714, 13, 16, 30, 45, 80, 104, 273, 0, 1870, 21, 26, 48, 75, 120, 208, 273, 714, 0, 4895, 34, 42, 78, 120, 200, 312, 546, 714, 1870, 0, 12816
Offset: 1
Examples
The array begins: 1 0 2 1 0 6 1 2 0 15 2 2 6 0 40 3 4 6 15 0 104 5 6 12 15 40 0 273 Row five is: 2 2 6 0 40 because the values 1 2 3 5 8 in Zeckendorf's expansion occur 2 1 2 0 5 times for natural numbers 8 through 12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..210 (rows n=1..20, flattened)
Programs
-
Mathematica
seq[rownum_] := Plus @@@ SplitBy[(#*Fibonacci[Range[2, Length[#] + 1]]) & /@ Reverse /@ IntegerDigits[FromDigits /@ Select[Tuples[{0, 1}, rownum], SequenceCount[#, {1, 1}] == 0 &]], Length] // Flatten; seq[11] (* Amiram Eldar, Jun 28 2025 *)
Extensions
More terms from Amiram Eldar, Jun 28 2025