A122932 a(n) = A000085(n) - A000079(n-1).
0, 0, 0, 2, 10, 44, 168, 636, 2364, 8984, 34672, 138104, 564408, 2382288, 10333152, 46173968, 211733776, 997182752, 4809439296, 23758139808, 119951644320, 618882541760, 3257839688320, 17492182188992, 95680426983360
Offset: 1
Examples
Row five of A117506 is 1 5 9 5 10 16 5 10 9 5 1. Row five of A007318 is 1 5 10 10 5 1. So included values are 9 5 16 5 9; therefore a(5) = 44 = 76 - 32.
Programs
-
Mathematica
Table[Sum[(2k)!/k!/2^k Binomial[n, 2k], {k, 0, n/2}] - 2^(n - 1) // FullSimplify, {n, 26}] (* Robert G. Wilson v, Sep 27 2006 *) (* or *) Table[HypergeometricU[ -(n/2), 1/2, -(1/2)]/(-(1/2))^(-(-n/2)) - 2^(n - 1), {n, 26}] (* Robert G. Wilson v, Sep 27 2006 *) (* or *) (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Table[NumberOfTableaux[M[Star[n+1]]] - 2^(n - 1), {n, 26}] (* Robert G. Wilson v, Sep 27 2006 *)
Extensions
More terms from Robert G. Wilson v, Sep 27 2006
Comments