A122934 Triangle T(n,k) = number of partitions of n into k parts, with each part size divisible by the next.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 3, 2, 4, 2, 2, 1, 1, 1, 2, 4, 2, 4, 2, 2, 1, 1, 1, 3, 4, 5, 3, 4, 2, 2, 1, 1, 1, 1, 3, 4, 5, 3, 4, 2, 2, 1, 1, 1, 5, 4, 6, 5, 6, 3, 4, 2, 2, 1, 1, 1, 1, 5, 4, 6, 5, 6, 3, 4, 2, 2, 1, 1, 1, 3, 4, 7, 6, 7, 6, 6, 3, 4, 2, 2, 1, 1
Offset: 1
Examples
Triangle starts: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 1, 2, 1, 1; 1, 3, 2, 2, 1, 1; ... T(6,3) = 2 because of the 3 partitions of 6 into 3 parts, [4,1,1] and [2,2,2] meet the definition; [3,2,1] fails because 2 does not divide 3.
Links
- Seiichi Manyama, Rows n = 1..140, flattened (Rows n = 1..50 from G. C. Greubel)
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5.
Programs
-
Mathematica
T[, 1] = 1; T[n, k_] := T[n, k] = DivisorSum[n, If[#==1, 0, T[#-1, k-1]]& ]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 30 2016 *)
Formula
T(n,1) = 1. T(n,k+1) = Sum_{d|n, d1} T(d-1,k).