A122935 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 19, 10, 1, 0, 1, 15, 45, 45, 15, 1, 0, 1, 21, 90, 141, 90, 21, 1, 0, 1, 28, 161, 357, 357, 161, 28, 1, 0, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 0, 1, 55, 615, 2850, 6765, 8953
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 1, 3, 1; 0, 1, 6, 6, 1; 0, 1, 10, 19, 10, 1; 0, 1, 15, 45, 45, 15, 1; 0, 1, 21, 90, 141, 90, 21, 1; 0, 1, 28, 161, 357, 357, 161, 28, 1; 0, 1, 36, 266, 784, 1107, 784, 255, 36, 1; 0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1; 0, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55, 1;
Formula
T(2*k-1,k) = A082758(k-1)for k >= 1.
Sum_{k=0..n} (-1)^(n-k)*T(n,k) = A117569(n).
G.f.: (1-x*(y+2)+x^2)/(1-2x*(1+y)+(1+y+y^2)*x^2). - Philippe Deléham, Oct 30 2011
Comments