cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122935 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, 0, 1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 19, 10, 1, 0, 1, 15, 45, 45, 15, 1, 0, 1, 21, 90, 141, 90, 21, 1, 0, 1, 28, 161, 357, 357, 161, 28, 1, 0, 1, 36, 266, 784, 1107, 784, 266, 36, 1, 0, 1, 45, 414, 1554, 2907, 2907, 1554, 414, 45, 1, 0, 1, 55, 615, 2850, 6765, 8953
Offset: 0

Views

Author

Philippe Deléham, Oct 30 2006

Keywords

Comments

Subtriangle (1 <= k <= n) is in A056241.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  3,   1;
  0, 1,  6,   6,    1;
  0, 1, 10,  19,   10,    1;
  0, 1, 15,  45,   45,   15,    1;
  0, 1, 21,  90,  141,   90,   21,    1;
  0, 1, 28, 161,  357,  357,  161,   28,    1;
  0, 1, 36, 266,  784, 1107,  784,  255,   36,   1;
  0, 1, 45, 414, 1554, 2907, 2907, 1554,  414,  45,  1;
  0, 1, 55, 615, 2850, 6765, 8953, 6765, 2850, 615, 55, 1;
		

Crossrefs

Formula

T(2*k-1,k) = A082758(k-1)for k >= 1.
Sum_{k=0..n} T(n,k) = A124302(n); see also A007051.
Sum_{k=0..n} (-1)^(n-k)*T(n,k) = A117569(n).
G.f.: (1-x*(y+2)+x^2)/(1-2x*(1+y)+(1+y+y^2)*x^2). - Philippe Deléham, Oct 30 2011