A122943 Odd numbers n ordered by n/2^BigOmega(n), where BigOmega(n) is the number of prime divisors of n with repetition.
1, 3, 9, 5, 27, 7, 15, 81, 21, 11, 45, 25, 13, 243, 63, 33, 135, 17, 35, 75, 19, 39, 729, 23, 189, 49, 99, 405, 51, 105, 55, 225, 57, 29, 117, 31, 125, 65, 2187, 69, 567, 147, 37, 297, 1215, 153, 77, 315, 41, 165, 675, 85, 171, 43, 87, 175, 351, 91, 93, 375, 47, 95, 195
Offset: 1
Keywords
Links
Programs
-
Mathematica
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]] (* from Eric Weisstein, Feb 07 2006 *); AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; f[n_] := Block[{ kap = AlmostPrime[20, n]}, kap / 2^IntegerExponent[ kap, 2]]; Array[f, 64] (* or *) f[n_] := n/2^PrimeOmega[n]; Take[2 Ordering[ Table[ f[ 2n - 1], {n, 1100}]] - 1, 63] (* Robert G. Wilson v, Feb 08 2011 *) f[n_] := n/2^PrimeOmega[n]; nn=9; t = Select[Table[{f[2 n - 1], 2 n - 1}, {n, 3^nn/2 + 1}], #[[1]] <= f[3^nn] &]; Transpose[Sort[t]][[2]]
Comments