cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122945 Recursive polynomials (p(k, x) = p(k - 1, x) - x^2*p(k - 2, x) ) used to produce a set of matrices a(i,j) at level n that then produce the characteristic polynomials which provide the triangular sequence t(n,m).

Table of values

n a(n)
1 1
2 1
3 -1
4 -1
5 1
6 1
7 1
8 -1
9 0
10 -1
11 -1
12 1
13 1
14 -2
15 1
16 1
17 -1
18 -2
19 3
20 -1
21 -1
22 -1
23 1
24 3
25 -4
26 0
27 3
28 1
29 1
30 -1
31 -4
32 5
33 2
34 -6
35 2
36 -1
37 -1
38 1
39 5
40 -6
41 -5
42 10
43 -2
44 -4
45 1
46 1
47 -1
48 -6
49 7
50 9
51 -15
52 0
53 10
54 -3
55 -1
56 -1
57 1
58 7
59 -8
60 -14
61 21
62 5
63 -20
64 5
65 5
66 1
67 1
68 -1
69 -8
70 9
71 20
72 -28
73 -14
74 35
75 -5
76 -15
77 4
78 -1
79 -1
80 1
81 9
82 -10
83 -27
84 36
85 28
86 -56
87 0
88 35
89 -9
90 -6
91 1
92 1
93 -1
94 -10
95 11

List of values

[1, 1, -1, -1, 1, 1, 1, -1, 0, -1, -1, 1, 1, -2, 1, 1, -1, -2, 3, -1, -1, -1, 1, 3, -4, 0, 3, 1, 1, -1, -4, 5, 2, -6, 2, -1, -1, 1, 5, -6, -5, 10, -2, -4, 1, 1, -1, -6, 7, 9, -15, 0, 10, -3, -1, -1, 1, 7, -8, -14, 21, 5, -20, 5, 5, 1, 1, -1, -8, 9, 20, -28, -14, 35, -5, -15, 4, -1, -1, 1, 9, -10, -27, 36, 28, -56, 0, 35, -9, -6, 1, 1, -1, -10, 11]