This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122971 #25 Oct 16 2024 14:40:09 %S A122971 0,1,1073741824,205891132094649,1152921504606846976, %T A122971 931322574615478515625,221073919720733357899776, %U A122971 22539340290692258087863249,1237940039285380274899124224 %N A122971 30th powers: a(n) = n^30. %H A122971 Amiram Eldar, <a href="/A122971/b122971.txt">Table of n, a(n) for n = 0..10000</a> %F A122971 Totally multiplicative sequence with a(p) = p^30 for prime p. Multiplicative sequence with a(p^e) = p^(30e). - _Jaroslav Krizek_, Nov 01 2009 %F A122971 From _Amiram Eldar_, Oct 09 2020: (Start) %F A122971 Dirichlet g.f.: zeta(s-30). %F A122971 Sum_{n>=1} 1/a(n) = zeta(30) = 6892673020804*Pi^30/5660878804669082674070015625. %F A122971 Sum_{n>=1} (-1)^(n+1)/a(n) = 536870911*zeta(30)/536870912 = 925118910976041358111*Pi^30/759790291646040068357842010112000000. (End) %F A122971 Intersection of A000290 and A000578 and A000584. - _M. F. Hasler_, Jul 24 2022 %t A122971 Range[0,10]^30 (* _Harvey P. Dale_, Mar 06 2019 *) %o A122971 (PARI) (A122971(n)=n^30); is_A122971(N)=ispower(N,30) \\ _M. F. Hasler_, Jul 24 2022 %o A122971 (Python) %o A122971 def A122971(n): return n**30 %o A122971 from sympy import nextprime %o A122971 def is_A122971(N, k=30): # 2nd opt. arg to check for powers other than 30 %o A122971 p = 2 %o A122971 while N >= p**k: %o A122971 for e in range(N): %o A122971 if N % p: break %o A122971 N //= p %o A122971 if e % k: return False %o A122971 p = nextprime(p) %o A122971 return N < 2 # _M. F. Hasler_, Jul 24 2022 %Y A122971 Cf. A122968, A122969, A122970. %Y A122971 Cf. A000290 (squares), A000578 (cubes), A000584 (5th powers). %K A122971 mult,nonn,easy %O A122971 0,3 %A A122971 _Franklin T. Adams-Watters_, Oct 27 2006