This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122990 #17 Feb 16 2025 08:33:02 %S A122990 8,10,11,16,22,30,34,40,42,47,49,68,74,79,168,202,245,280,463,534,803, %T A122990 936,958,1299,2455,2546,7391 %N A122990 Numbers m such that (1/99)*Sum_{k=1..m} k! = A007489(m)/99 is prime. %C A122990 A007489(n) = Sum_{k=1..m} k! = (!(n+1) - 1) = A003422(n+1) - 1 = {0, 1, 3, 9, 33, 153, 873, 5913, 46233, 409113, 4037913, ...}. A007489(n) is divisible by 99 for n=8 and n>9. Corresponding primes of the form (!(n+1) - 1)/99 are {467, 40787, 443987, 225498914387, 11895484822660898387, 2771826449193354891007108898387, 3072603482270933019578343003268898387, ...}. %H A122990 Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/mathland/matha1/matha132.htm">Factorizations of many number sequences</a>. %H A122990 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LeftFactorial.html">Left Factorial</a>. %t A122990 f=0;Do[f=f+n!;If[PrimeQ[f/99],Print[{n,f/99}]],{n,1,534}] %t A122990 Position[Accumulate[Range[1000]!]/99,_?PrimeQ]//Flatten (* The program generates the first 23 terms of the sequence. *) (* _Harvey P. Dale_, Sep 21 2023 *) %o A122990 (Python) %o A122990 from math import factorial %o A122990 from sympy import isprime, prime %o A122990 def afind(limit, startk=8): %o A122990 if startk <= 8 <= limit: print(8, end=", ") %o A122990 f, s, startk = 1, 0, max(startk, 10) %o A122990 for i in range(1, startk): %o A122990 f *= i %o A122990 s += f %o A122990 for k in range(startk, limit+1): %o A122990 f *= k %o A122990 s += f %o A122990 if isprime(s//99): %o A122990 print(k, end=", ") %o A122990 afind(535) # _Michael S. Branicky_, Jan 17 2022 %Y A122990 Cf. A007489, A003422 (Left factorial). %K A122990 hard,more,nonn %O A122990 1,1 %A A122990 _Alexander Adamchuk_, Oct 28 2006 %E A122990 a(21)-a(26) from _Michael S. Branicky_, Jan 17 2022 %E A122990 a(27) from _Michael S. Branicky_, Apr 05 2023