This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123015 #7 May 03 2020 09:14:22 %S A123015 1,2,3,4,6,8,10,13,17,21,26,33,41,50,62,77,94,115,142,174,212,260,319, %T A123015 389,475,582,711,867,1060,1296,1581,1930,2359,2880,3514,4292,5242, %U A123015 6397,7809,9537,11642,14209,17349,21182,25854,31561,38534,47039,57418,70098,85576 %N A123015 Grow a binary tree using the following rules. Initially there is a single node labeled 1. At each step we add 1 to all labels less than 3. If a node has label 3 and zero or one descendants we add a new descendant labeled 1. Sequence gives sum of all labels at step n. %C A123015 An analog of Fibonacci's rabbits. The behavior of the node is given by its age. A node of age 0 or 1 grows and one of age 2 or 3 produces a new node. - _Christian G. Bower_, Nov 13 2006 %F A123015 a(n) = a(n-3)+a(n-4)+3. - _Ralf Stephan_, Nov 12 2006 %F A123015 G.f.: (1+x+x^2)/(1-x-x^3+x^5). - _Christian G. Bower_, Nov 13 2006 %e A123015 step #0: %e A123015 ..1 %e A123015 step #1: %e A123015 ..2 %e A123015 step #2: %e A123015 ..3 %e A123015 step #3: %e A123015 ..3 %e A123015 ./ %e A123015 1 %e A123015 step #4: %e A123015 ..3 %e A123015 ./.\ %e A123015 2...1 %e A123015 step #5: %e A123015 ..3 %e A123015 ./.\ %e A123015 3...2 %e A123015 step #6: %e A123015 ....3 %e A123015 .../.\ %e A123015 ..3...3 %e A123015 ./ %e A123015 1 %e A123015 step #7: %e A123015 ......3 %e A123015 ..../...\ %e A123015 ..3.......3 %e A123015 ./.\...../ %e A123015 2...1...1 %e A123015 step #8: %e A123015 ......3 %e A123015 ..../...\ %e A123015 ..3.......3 %e A123015 ./.\...../.\ %e A123015 3...2...2...1 %o A123015 (Ruby) class Node; def initialize; @n = 1; @c = [] end %o A123015 def count; @c.inject(@n){|n,c| n + c.count} end %o A123015 def grow; return @n += 1 if @n < 3; @c.each{|c| c.grow } %o A123015 @c << Node.new if @c.size < 2; end; end; r = []; node = Node.new %o A123015 30.times { r << node.count; node.grow }; p r %Y A123015 Cf. A123552. %K A123015 nonn,easy %O A123015 0,2 %A A123015 _Simon Strandgaard_, Nov 12 2006