This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123019 #34 Feb 16 2025 08:33:02 %S A123019 1,1,1,1,-1,1,3,-4,1,1,6,-9,3,1,10,-15,3,3,-1,1,15,-20,-6,18,-8,1,1, %T A123019 21,-21,-35,60,-30,5,1,28,-14,-98,145,-70,5,5,-1,1,36,6,-210,279,-100, %U A123019 -45,45,-12,1,1,45,45,-384,441,-21,-280,210,-63,7,1,55,110 %N A123019 Triangle of coefficients of (1 - x)^n*b(x/(1 - x),n), where b(x,n) is the Morgan-Voyce polynomial related to A085478. %C A123019 The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A085478(n,j)*x^j*(1 - x)^(n - j). %H A123019 G. C. Greubel, <a href="/A123019/b123019.txt">Rows n = 0..50 of the irregular triangle, flattened</a> %H A123019 Thomas Koshy, <a href="https://doi.org/10.1002/9781118033067.ch41">Morgan-Voyce Polynomials</a>, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001, pp. 480-495. %H A123019 M. N. S. Swamy, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/38-1/swamy2.pdf">Rising Diagonal Polynomials Associated with Morgan-Voyce Polynomials</a>, The Fibonacci Quarterly Vol. 38 (2000), 61-70. %H A123019 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Morgan-VoycePolynomials.html">Morgan-Voyce Polynomials</a> %F A123019 G.f.: (1 - (1 - x)*y)/(1 + (x - 2)*y + (x - 1)^2*y^2). - _Vladeta Jovovic_, Dec 14 2009 %F A123019 From _Franck Maminirina Ramaharo_, Oct 10 2018: (Start) %F A123019 Row n = coefficients in the expansion of (1/(2*sqrt((4 - 3*x)*x)))*((sqrt((4 - 3*x)*x) + x)*((2 - x + sqrt((4 - 3*x)*x))/2)^n + (sqrt((4 - 3*x)*x) - x)*((2 - x - sqrt((4 - 3*x)*x))/2)^n). %F A123019 E.g.f.: (1/(2*sqrt((4 - 3*x)*x)))*((sqrt((4 - 3*x)*x) + x)*exp(y*(2 - x + sqrt((4 - 3*x)*x))/2) + (sqrt((4 - 3*x)*x) - x)*exp(y*(2 - x - sqrt((4 - 3*x)*x))/2)). %F A123019 T(n,1) = A000217(n-1). (End) %e A123019 Triangle begins: %e A123019 1; %e A123019 1; %e A123019 1, 1, -1; %e A123019 1, 3, -4, 1; %e A123019 1, 6, -9, 3; %e A123019 1, 10, -15, 3, 3, -1; %e A123019 1, 15, -20, -6, 18, -8, 1; %e A123019 1, 21, -21, -35, 60, -30, 5; %e A123019 1, 28, -14, -98, 145, -70, 5, 5, -1; %e A123019 1, 36, 6, -210, 279, -100, -45, 45, -12, 1; %e A123019 1, 45, 45, -384, 441, -21, -280, 210, -63, 7; %e A123019 1, 55, 110, -627, 561, 385, -973, 665, -189, 7, 7, -1; %e A123019 ... reformatted and extended. - _Franck Maminirina Ramaharo_, Oct 09 2018 %t A123019 Table[CoefficientList[Sum[Binomial[n+k, n-k]*x^k*(1-x)^(n-k), {k, 0, n}], x], {n, 0, 10}]//Flatten %o A123019 (Maxima) A085478(n, k) := binomial(n + k, 2*k)$ %o A123019 P(x, n) := expand(sum(A085478(n, j)*x^j*(1 - x)^(n - j),j,0,n))$ %o A123019 T(n, k) := ratcoef(P(x, n), x, k)$ %o A123019 tabf(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x))); /* _Franck Maminirina Ramaharo_, Oct 09 2018 */ %o A123019 (Sage) %o A123019 def p(n,x): return sum( binomial(n+j, 2*j)*x^j*(1-x)^(n-j) for j in (0..n) ) %o A123019 def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False) %o A123019 flatten([T(n) for n in (0..12)]) # _G. C. Greubel_, Jul 15 2021 %Y A123019 Cf. A078812, A085478. %Y A123019 Cf. A122753, A123018, A123021, A123027, A123199, A123202, A123217, A123221. %K A123019 sign,tabf %O A123019 0,7 %A A123019 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 24 2006 %E A123019 Edited, new name, and offset corrected by _Franck Maminirina Ramaharo_, Oct 09 2018