This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123045 #20 Mar 20 2020 10:06:00 %S A123045 0,2,6,12,39,104,366,1172,4179,14572,52740,190652,700274,2581112, %T A123045 9591666,35791472,134236179,505290272,1908947406,7233629132, %U A123045 27488079132,104715393912,399823554006,1529755308212,5864066561554,22517998136936,86607703209516 %N A123045 Number of frieze patterns of length n under a certain group (see Pisanski et al. for precise definition). %H A123045 Alois P. Heinz, <a href="/A123045/b123045.txt">Table of n, a(n) for n = 0..1000</a> %H A123045 Shinsaku Fujita, <a href="https://www.webfile.jp/lite-tcsj/dl.php?i=2071&s=aaa3068608b595219b60">alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method</a>, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8. %H A123045 T. Pisanski, D. Schattschneider and B. Servatius, <a href="http://www.jstor.org/stable/27642932">Applying Burnside's lemma to a one-dimensional Escher problem</a>, Math. Mag., 79 (2006), 167-180. See F(n). %F A123045 See Maple program. %p A123045 with(numtheory): %p A123045 V:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end; # A054611 %p A123045 H:=n-> if n mod 2 = 0 then (n/2)*4^(n/2); else 0; fi; # this is A018215 interleaved with 0's %p A123045 A123045:=n-> `if`(n=0,0, (V(n)+H(n))/(2*n)); %t A123045 V[n_] := Module[{t1 = 0}, Do[t1 = t1 + EulerPhi[k] 4^(n/k), {k, Divisors[n]}]; t1]; %t A123045 H[n_] := If[Mod[n, 2] == 0, (n/2) 4^(n/2), 0]; %t A123045 a[n_] := If[n == 0, 0, (V[n] + H[n])/(2n)]; %t A123045 a /@ Range[0, 26] (* _Jean-François Alcover_, Mar 20 2020, from Maple *) %Y A123045 Cf. A054611, A018215. %Y A123045 The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848. %K A123045 nonn %O A123045 0,2 %A A123045 _N. J. A. Sloane_, Nov 11 2006