A123071 Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
1, 2, 4, 12, 36, 120, 400, 1520, 5776, 23712, 97344, 431808, 1915456, 9012608, 42406144, 210988800, 1049760000, 5475340800, 28558296064, 155672726528, 848579961856, 4810614454272, 27271456395264, 160376430784512, 943132599095296, 5735299537018880
Offset: 0
Keywords
Links
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence S(2k+1) eq(24) p. 210.]
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
Programs
-
Maple
For Maple program see A005635. # alternative # this is A000898, replicated as 1,1,2,2,6,6,20,20,76,76,... B := proc(n) if n=0 or n= -2 then 1 ; elif type (n,'odd') then procname(n-1) ; else 2*procname(n-2)+(n-2)*procname(n-4) ; end if; end proc: A123071 := proc(n) B(n)*B(n+1) ; end proc: seq(A123071(n),n=0..20) ; # R. J. Mathar, Apr 02 2017
-
Mathematica
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n-1], True, 2*B[n-2] + (n-2)*B[n-4]]; a[n_] := B[n]*B[n+1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 23 2022, after R. J. Mathar *)
Formula
Conjecture: 2*a(n) +a(n-1) -2*n*a(n-2) +(-n-10)*a(n-3) -2*(n-2)*(n+2)*a(n-4) +(-n^2-2*n+23)*a(n-5) +2*(n-5)*(n^2-7*n+11)*a(n-6) +(n-6)*(n-5)^2*a(n-7)=0. - R. J. Mathar, Apr 02 2017