cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123071 Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).

Original entry on oeis.org

1, 2, 4, 12, 36, 120, 400, 1520, 5776, 23712, 97344, 431808, 1915456, 9012608, 42406144, 210988800, 1049760000, 5475340800, 28558296064, 155672726528, 848579961856, 4810614454272, 27271456395264, 160376430784512, 943132599095296, 5735299537018880
Offset: 0

Views

Author

N. J. A. Sloane, Sep 28 2006

Keywords

Crossrefs

Programs

  • Maple
    For Maple program see A005635.
    # alternative
    # this is A000898, replicated as 1,1,2,2,6,6,20,20,76,76,...
    B := proc(n)
        if n=0 or n= -2 then
            1 ;
        elif type (n,'odd') then
            procname(n-1) ;
        else
            2*procname(n-2)+(n-2)*procname(n-4) ;
        end if;
    end proc:
    A123071 := proc(n)
        B(n)*B(n+1) ;
    end proc:
    seq(A123071(n),n=0..20) ; # R. J. Mathar, Apr 02 2017
  • Mathematica
    B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n-1], True, 2*B[n-2] + (n-2)*B[n-4]];
    a[n_] := B[n]*B[n+1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 23 2022, after R. J. Mathar *)

Formula

Conjecture: 2*a(n) +a(n-1) -2*n*a(n-2) +(-n-10)*a(n-3) -2*(n-2)*(n+2)*a(n-4) +(-n^2-2*n+23)*a(n-5) +2*(n-5)*(n^2-7*n+11)*a(n-6) +(n-6)*(n-5)^2*a(n-7)=0. - R. J. Mathar, Apr 02 2017