This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123110 #30 Jan 19 2025 20:46:43 %S A123110 1,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1, %T A123110 1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,1, %U A123110 1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A123110 Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. %C A123110 Diagonal sums give A123108. - _Philippe Deléham_, Oct 08 2009 %H A123110 Antti Karttunen, <a href="/A123110/b123110.txt">Table of n, a(n) for n = 0..22154; the first 210 rows of the triangle</a> %H A123110 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>. %F A123110 Sum_{k=0..n} T(n,k)*x^k = A000007(n), A028310(n), A095121(n), A123109(n) for x=0,1,2,3 respectively. %F A123110 G.f.: (1-x+y*x^2)/(1-(1+y)*x+y*x^2). - _Philippe Deléham_, Nov 01 2011 %F A123110 From _Tom Copeland_, Nov 10 2012: (Start) %F A123110 O.g.f. for row polynomials: 1 + (t/(1-t))*(1/(1-x)-1/(1-x*t)) = 1 + t*x + (t+t^2)*x^2 + .... %F A123110 E.g.f. for row polynomials: 1 + (t/(1-t))*(e^x-e^(t*x)) = 1 + t*x + (t+t^2)*x^2/2 + .... (End) %F A123110 a(0) = 1; for n > 0, a(n) = 1 - A010054(n). [As a flat sequence] - _Antti Karttunen_, Jan 19 2025 %e A123110 Triangle begins: %e A123110 1; %e A123110 0, 1; %e A123110 0, 1, 1; %e A123110 0, 1, 1, 1; %e A123110 0, 1, 1, 1, 1; %e A123110 0, 1, 1, 1, 1, 1; %e A123110 0, 1, 1, 1, 1, 1, 1; %e A123110 0, 1, 1, 1, 1, 1, 1, 1; %e A123110 0, 1, 1, 1, 1, 1, 1, 1, 1; %e A123110 0, 1, 1, 1, 1, 1, 1, 1, 1, 1; %o A123110 (PARI) A123110(n) = (!n || !ispolygonal(n,3)); \\ _Antti Karttunen_, Jan 19 2025 %Y A123110 Essentially the same sequence as A114607. %Y A123110 Also essentially the same as A023532. - _R. J. Mathar_, Jun 18 2008 %Y A123110 After the initial a(0)=1, the characteristic function of A014132. %Y A123110 Cf. A010054. %K A123110 nonn,tabl %O A123110 0,1 %A A123110 _Philippe Deléham_, Sep 28 2006