This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123129 #7 Aug 04 2021 18:15:58 %S A123129 1,4,25,512,2401,100000,531441,35831808,2562890625,5159780352, %T A123129 2015993900449,17592186044416,129746337890625,20822964865671168, %U A123129 3243919932521508681,136880068015412051968,288441413567621167681 %N A123129 a(n) = ( n + prime(n+1) - prime(n) )^(n-1). %H A123129 G. C. Greubel, <a href="/A123129/b123129.txt">Table of n, a(n) for n = 1..350</a> %H A123129 Sergio Silva, <a href="http://ginasiomental.no.sapo.pt/materialc/mteste/teste.htm">Teste Numerico</a>. %F A123129 a(n) = ( n + prime(n+1) - prime(n) )^(n-1) = ( n + A001223(n) )^(n-1). %F A123129 From _G. C. Greubel_, Aug 04 2021: (Start) %F A123129 a(n) = (A014690(n) - prime(n))^(n-1) = (A095116(n+1) - prime(n))^(n-1). %F A123129 a(n) = (prime(n+1) - A014689(n))^(n-1). (End) %t A123129 Table[(n +Prime[n+1] -Prime[n])^(n-1), {n, 1, 30}] (* _G. C. Greubel_, Aug 04 2021 *) %o A123129 (PARI) for(n=1, 25, print1( (prime(n+1) -prime(n) +n)^(n-1), ",")) %o A123129 (Sage) [(n + nth_prime(n+1) - nth_prime(n))^(n-1) for n in (1..30)] # _G. C. Greubel_, Aug 04 2021 %Y A123129 Cf. A000040, A001223, A014690, A095116. %K A123129 nonn %O A123129 1,2 %A A123129 Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 30 2006