This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123149 #20 Jul 17 2023 17:14:23 %S A123149 1,1,0,1,1,0,1,1,1,0,1,2,2,1,0,1,2,3,2,1,0,1,3,5,5,3,1,0,1,3,6,7,6,3, %T A123149 1,0,1,4,9,13,13,9,4,1,0,1,4,10,16,19,16,10,4,1,0,1,5,14,26,35,35,26, %U A123149 14,5,1,0,1,5,15,30,45,51,45,30,15,5,1,0,1,6,20,45,75,96,96,75,45,20,6,1,0 %N A123149 Triangle T(n,k), 0<=k<=n, read by rows given by [1, 0, -1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, -1, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. %C A123149 A169623 is a very similar triangle except it does not have the outer diagonal of 0's. - _N. J. A. Sloane_, Nov 23 2017 %H A123149 G. C. Greubel, <a href="/A123149/b123149.txt">Rows n = 0..50 of the triangle, flattened</a> %F A123149 T(n,k) = T(n-1,k-1) + T(n-1,k) if n even, T(n,k) = T(n-1,k-1) + T(n-2,k) if n odd, T(0,0) = 1, T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k < 0 or if k > n. %F A123149 T(n,k) = T(n,n-k-1). %F A123149 Sum_{k=0..n} T(n,k) = A038754(n-1), for n>=1. %F A123149 T(2*n,n) = A005773(n). %F A123149 T(2*n+1,n) = A002426(n). %F A123149 From _Philippe Deléham_, May 04 2012: (Start) %F A123149 G.f.: (1+x-y^2*x^2)/(1-x^2-y*x^2-y^2*x^2). %F A123149 T(n,k) = T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. %F A123149 Sum_{k=0..n} T(n,k) = A182522(n). (End) %F A123149 From _G. C. Greubel_, Jul 17 2023: (Start) %F A123149 Sum_{k=0..n} (-1)^k*T(n,k) = A135528(n). %F A123149 Sum_{k=0..floor(n/2)} T(n-k,k) = [n==0] + A013979(n+1). (End) %e A123149 Triangle begins: %e A123149 1; %e A123149 1, 0; %e A123149 1, 1, 0; %e A123149 1, 1, 1, 0; %e A123149 1, 2, 2, 1, 0; %e A123149 1, 2, 3, 2, 1, 0; %e A123149 1, 3, 5, 5, 3, 1, 0; %e A123149 1, 3, 6, 7, 6, 3, 1, 0; %e A123149 1, 4, 9, 13, 13, 9, 4, 1, 0; %t A123149 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0 || k==n-1, 1, If[k==n, 0, T[n-2,k] +T[n-2,k-1] +T[n-2,k-2] ]]]; %t A123149 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 17 2023 *) %o A123149 (Magma) %o A123149 function T(n,k) // T = A123149 %o A123149 if k lt 0 or k gt n then return 0; %o A123149 elif k eq 0 or k eq n-1 then return 1; %o A123149 elif k eq n then return 0; %o A123149 else return T(n-2,k) +T(n-2,k-1) +T(n-2,k-2); %o A123149 end if; %o A123149 end function; %o A123149 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 17 2023 %o A123149 (SageMath) %o A123149 def T(n,k): # T = A123149 %o A123149 if (k<0 or k>n): return 0 %o A123149 elif (k==0 or k==n-1): return 1 %o A123149 elif (k==n): return 0 %o A123149 else: return T(n-2,k) +T(n-2,k-1) +T(n-2,k-2) %o A123149 flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jul 17 2023 %Y A123149 Cf. A002426, A005773, A013979, A027907, A038754, A084938, A135528, A169623, A182522 (row sums). %K A123149 nonn,tabl,easy %O A123149 0,12 %A A123149 _Philippe Deléham_, Nov 05 2006