This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123150 #14 Jul 17 2023 18:23:57 %S A123150 1,1,2,6,24,2399,6299,28222,169338,1244136,213748501,914608501, %T A123150 6392593442,57693964614,618160168824,150820728557099,895583729570699, %U A123150 8513087005239262,102642351647368962,1446049101566437896,457348626455818450501,3475580442134239108501 %N A123150 a(n) = (n^5 - n^4 - n^3 + n^2 - 1)*a(n-5) for n > 4, otherwise n!. %H A123150 G. C. Greubel, <a href="/A123150/b123150.txt">Table of n, a(n) for n = 0..445</a> %F A123150 a(n) = n! for n < 5, otherwise a(n) = (n^5 -n^4 -n^3 +n^2 -1)*a(n-5). %t A123150 a[n_]:= a[n]= If[n<5, n!, (n^2*(n-1)*(n^2-1) -1)*a[n-5]]; %t A123150 Table[a[n], {n,0,30}] %o A123150 (Magma) %o A123150 function a(n) // a = A123150 %o A123150 if n le 4 then return Factorial(n); %o A123150 else return (n^2*(n-1)*(n^2-1) -1)*a(n-5); %o A123150 end if; %o A123150 end function; %o A123150 [a(n): n in [0..30]]; // _G. C. Greubel_, Jul 17 2023 %o A123150 (SageMath) %o A123150 @CachedFunction # a = A123150 %o A123150 def a(n): return factorial(n) if (n<5) else (n^2*(n-1)*(n^2-1) -1)*a(n-5) %o A123150 [a(n) for n in (0..30)] # _G. C. Greubel_, Jul 17 2023 %Y A123150 Cf. A123151. %K A123150 nonn,easy %O A123150 0,3 %A A123150 _Roger L. Bagula_, Oct 01 2006 %E A123150 Edited by _N. J. A. Sloane_, Oct 04 2006 %E A123150 Edited by _G. C. Greubel_, Jul 17 2023