This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123158 #22 Jul 19 2023 07:56:58 %S A123158 1,1,1,2,2,1,5,5,3,1,15,15,10,5,1,52,52,37,22,6,1,203,203,151,99,31,9, %T A123158 1,877,877,674,471,160,61,10,1,4140,4140,3263,2386,856,385,75,14,1, %U A123158 21147,21147,17007,12867,4802,2416,520,135,15,1 %N A123158 Square array related to Bell numbers read by antidiagonals. %H A123158 G. C. Greubel, <a href="/A123158/b123158.txt">Antidiagonals n = 0..50, flattened</a> %F A123158 A(n, k) = 0 if n < 0, A(0, k) = 1 for k >= 0, A(n, k) = A(n, k-1) + (1/2)*(k+1)*A(n-1, k+1) if k is an odd number, A(n, k) = A(n, k-1) + A(n-1, k+1) if k is an even number (array). %F A123158 A(n, 0) = A000110(n). %F A123158 A(n, 1) = A000110(n+1). %F A123158 A(n, 2) = A005493(n). %F A123158 A(n, 3) = A033452(n). %F A123158 A(n, 4) = A003128(n+2). %F A123158 T(n, k) = A(n-k, k) (antidiagonals). %e A123158 Square array, A(n, k), begins: %e A123158 1, 1, 1, 1, 1, ... (Row n=0: A000012); %e A123158 1, 2, 3, 5, 6, ... (Row n=1: A117142); %e A123158 2, 5, 10, 22, 31, ...; %e A123158 5, 15, 37, 99, 160, ...; %e A123158 15, 52, 151, 471, 856, ...; %e A123158 52, 203, 674, 2386, 4802, ...; %e A123158 Antidiagonals, T(n, k), begin as: %e A123158 1; %e A123158 1, 1; %e A123158 2, 2, 1; %e A123158 5, 5, 3, 1; %e A123158 15, 15, 10, 5, 1; %e A123158 52, 52, 37, 22, 6, 1; %e A123158 203, 203, 151, 99, 31, 9, 1; %e A123158 877, 877, 674, 471, 160, 61, 10, 1; %t A123158 A[0, _?NonNegative] = 1; %t A123158 A[n_, k_]:= A[n, k]= If[n<0 || k<0, 0, If[OddQ[k], A[n, k-1] + (1/2)(k+1) A[n-1, k+1], A[n, k-1] + A[n-1, k+1]]]; %t A123158 Table[A[n-k, k], {n,0,10}, {k,0,n}]//Flatten (* _Jean-François Alcover_, Feb 21 2020 *) %o A123158 (Magma) %o A123158 function A(n,k) %o A123158 if k lt 0 or n lt 0 then return 0; %o A123158 elif n eq 0 then return 1; %o A123158 elif (k mod 2) eq 1 then return A(n,k-1) + (1/2)*(k+1)*A(n-1,k+1); %o A123158 else return A(n,k-1) + A(n-1,k+1); %o A123158 end if; %o A123158 end function; %o A123158 T:= func< n,k | A(n-k,k) >; %o A123158 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 18 2023 %o A123158 (SageMath) %o A123158 @CachedFunction %o A123158 def A(n,k): %o A123158 if (k<0 or n<0): return 0 %o A123158 elif (n==0): return 1 %o A123158 elif (k%2==1): return A(n,k-1) +(1/2)*(k+1)*A(n-1,k+1) %o A123158 else: return A(n,k-1) +A(n-1,k+1) %o A123158 def T(n,k): return A(n-k,k) %o A123158 flatten([[T(n,k) for k in range(n+1)] for n in range(12)]) # _G. C. Greubel_, Jul 18 2023 %Y A123158 Columns include: A000110 (Bell numbers), A003128, A005493, A033452. %Y A123158 Rows include: A000012, A117142. %K A123158 easy,nonn,tabl %O A123158 0,4 %A A123158 _Philippe Deléham_, Oct 01 2006