cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123162 Triangle read by rows: T(n,k) = binomial(2*n - 1, 2*k - 1) for 0 < k <= n and T(n,0) = 1.

This page as a plain text file.
%I A123162 #30 Jul 19 2023 07:57:07
%S A123162 1,1,1,1,3,1,1,5,10,1,1,7,35,21,1,1,9,84,126,36,1,1,11,165,462,330,55,
%T A123162 1,1,13,286,1287,1716,715,78,1,1,15,455,3003,6435,5005,1365,105,1,1,
%U A123162 17,680,6188,19448,24310,12376,2380,136,1,1,19,969,11628,50388,92378,75582,27132,3876,171,1
%N A123162 Triangle read by rows: T(n,k) = binomial(2*n - 1, 2*k - 1) for 0 < k <= n and T(n,0) = 1.
%H A123162 Muniru A Asiru, <a href="/A123162/b123162.txt">Rows n = 0..50, flattened</a>
%F A123162 From _Paul Barry_, May 26 2008: (Start)
%F A123162 T(n,k) = binomial(2*n - 1, 2*k - 1) + 0^k.
%F A123162 Column k has g.f. (x^k/(1 - x)^(2*k + 0^k))*Sum_{j=0..k} binomial(2*k, 2*j)*x^j. (End)
%F A123162 From _Franck Maminirina Ramaharo_, Oct 10 2018: (Start)
%F A123162 Row n = coefficients in the expansion of ((x + sqrt(x))*(sqrt(x) - 1)^(2*n) + (x - sqrt(x))*(sqrt(x) + 1)^(2*n) + 2*x - 2)/(2*x - 2).
%F A123162 G.f.: (1 - (2 + x)*y + (1 - 2*x)*y^2 - (x - x^2)*y^3)/(1 - (3 + 2*x)*y + (3 + x^2)*y^2 - (1 - 2*x + x^2)*y^3).
%F A123162 E.g.f.: ((x + sqrt(x))*exp(y*(sqrt(x) - 1)^2) + (x - sqrt(x))*exp(y*(sqrt(x) + 1)^2) + (2*x - 2)*exp(y) - 2*x)/(2*x - 2). (End)
%F A123162 From _G. C. Greubel_, Jul 18 2023: (Start)
%F A123162 Sum_{k=0..n} T(n,k) = A123166(n).
%F A123162 T(n, n-1) = (n-1)*T(n, 1), n >= 2.
%F A123162 T(2*n, n) = A259557(n).
%F A123162 T(2*n+1, n+1) = A002458(n). (End)
%e A123162 Triangle begins:
%e A123162      1;
%e A123162      1,  1;
%e A123162      1,  3,   1;
%e A123162      1,  5,  10,    1;
%e A123162      1,  7,  35,   21,    1;
%e A123162      1,  9,  84,  126,   36,    1;
%e A123162      1, 11, 165,  462,  330,   55,    1;
%e A123162      1, 13, 286, 1287, 1716,  715,   78,  1;
%e A123162      1, 15, 455, 3003, 6435, 5005, 1365, 105, 1;
%e A123162      ...
%t A123162 T[n_, k_]= If [k==0, 1, Binomial[2*n-1, 2*k-1]];
%t A123162 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
%o A123162 (Maxima) T(n, k) := if k = 0 then 1 else binomial(2*n - 1, 2*k - 1)$
%o A123162 tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ /* _Franck Maminirina Ramaharo_, Oct 10 2018 */
%o A123162 (GAP) Flat(Concatenation([1],List([1..10],n->Concatenation([1],List([1..n],m->Binomial(2*n-1,2*m-1)))))); # _Muniru A Asiru_, Oct 11 2018
%o A123162 (SageMath)
%o A123162 def A123162(n,k): return binomial(2*n-1, 2*k-1) + int(k==0)
%o A123162 flatten([[A123162(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 01 2022
%o A123162 (Magma)
%o A123162 A123162:= func< n,k | k eq 0 select 1 else Binomial(2*n-1, 2*k-1) >;
%o A123162 [A123162(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 18 2023
%Y A123162 Cf. A002458, A007318, A034867, A103327, A122366, A123166, A259557.
%K A123162 nonn,tabl,easy
%O A123162 0,5
%A A123162 _Roger L. Bagula_, Oct 02 2006
%E A123162 Edited by _N. J. A. Sloane_, Oct 04 2006
%E A123162 Partially edited and offset corrected by _Franck Maminirina Ramaharo_, Oct 10 2018