This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123192 #41 Feb 16 2025 08:33:02 %S A123192 -1,0,0,0,-1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,0,0,0,0, %T A123192 -1,-1,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,-1,1,0,0,0,-1,0,0,0,1,0,0,0,-1, %U A123192 0,0,0,0,0,0,0,-1,-1,0,0,0,1,0,0,0,-1,0,0,0 %N A123192 Triangle read by rows: row n gives the coefficients in the expansion of x^abs(3*n - 2)*p(n;x), where p(n;x) denotes the bracket polynomial for the (2,n)-torus knots. %C A123192 From _Franck Maminirina Ramaharo_, Aug 11 2018: (Start) %C A123192 Using Kauffman's notation, the formal expression of the bracket polynomial for the (2,n)-torus knot is defined as follows: %C A123192 K(n;A,B,d) = A*K(n-1;A,B,d) + B*(A + B*d)^(n - 1) with K(0;A,B,d) = d. %C A123192 - The polynomial in this sequence is defined as p(n;x) = K(n;x,1/x,-x^2-x^(-2)), and verifies p(n;x) = x*p(n-1;x) + (-1)^(n - 1)*x^(-3*n + 2). %C A123192 - The polynomial x*K(n;1,1,x) yields (x + 1)^n + x^2 - 1 which is the bracket evaluated at the shadow diagram of the (2,n)-torus knot, see A300453. %C A123192 - The polynomial sqrt(x)*K(n;-1,sqrt(x),sqrt(x)) yields (x - 1)^n + (x - 1)*(-1)^n. This is the chromatic polynomial for the n-cycle graph which is the medial graph of the (2,n)-torus knot, see A137396. %C A123192 The planar diagram of the (2,0)-torus knot is two non-intersecting circles. %C A123192 (End) %D A123192 Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 38 and p. 353. %H A123192 Paul Corbitt, <a href="http://educ.jmu.edu/~taalmala/OJUPKT/">Torus Links and the Bracket Polynomial</a>. %H A123192 Louis H. Kauffman, <a href="https://doi.org/10.1016/0040-9383(87)90009-7">State models and the Jones polynomial</a>, Topology Vol. 26 (1987), 395-407. %H A123192 Franck Ramaharo, <a href="https://arxiv.org/abs/1911.04528">Note on sequences A123192, A137396 and A300453</a>, arXiv:1911.04528 [math.CO], 2019. %H A123192 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BracketPolynomial.html">Bracket Polynomial</a>. %H A123192 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TorusKnot.html">Torus Knot</a>. %H A123192 Wikipedia, <a href="https://en.wikipedia.org/wiki/Torus_knot">Torus knot</a>. %H A123192 Wikipedia, <a href="https://en.wikipedia.org/wiki/Knot_(mathematics)#Medial_graph">Medial graph</a>. %e A123192 From _Franck Maminirina Ramaharo_, Aug 11 2018: (Start) %e A123192 The bracket polynomial for some value of n: %e A123192 p(0;x) = -x^2 - 1/x^2; %e A123192 p(1;x) = -x^3; %e A123192 p(2;x) = -x^4 - 1/x^4; %e A123192 p(3;x) = -x^5 - 1/x^3 + 1/x^7; %e A123192 p(4;x) = -x^6 - 1/x^2 + 1/x^6 - 1/x^10; %e A123192 p(5;x) = -x^7 - 1/x + 1/x^5 - 1/x^9 + 1/x^13; %e A123192 p(6;x) = -x^8 - 1 + 1/x^4 - 1/x^8 + 1/x^12 - 1/x^16; %e A123192 p(7;x) = -x^9 - x + 1/x^3 - 1/x^7 + 1/x^11 - 1/x^15 + 1/x^19; %e A123192 ... %e A123192 The triangle giving the coefficients in x^abs(3*n - 2)*p(n;x) begins: %e A123192 -1, 0, 0, 0, -1 %e A123192 0, 0, 0, 0, -1 %e A123192 -1, 0, 0, 0, 0, 0, 0, 0, -1 %e A123192 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1 %e A123192 -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1 %e A123192 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1 %e A123192 ... %e A123192 (End) %o A123192 (Maxima) %o A123192 K(n, A, B, d) := if n = 0 then d else A*K(n - 1, A, B, d) + B*(A + B*d)^(n - 1)$ %o A123192 p(n, x) := x^abs(3*n - 2)*K(n, x, 1/x, -x^(-2) - x^2)$ %o A123192 t(n, k) := ratcoef(p(n, x), x, k)$ %o A123192 T:[]$ %o A123192 for n:0 thru 10 do T:append(T, makelist(t(n,k), k, 0, max(4, 4*n)))$ %o A123192 T; /* _Franck Maminirina Ramaharo_, Aug 11 2018 */ %Y A123192 Cf. A029694, A051764, A137396, A300453. %K A123192 tabf,sign %O A123192 0,1 %A A123192 _Roger L. Bagula_, Oct 03 2006 %E A123192 Partially edited by _N. J. A. Sloane_, May 22 2007 %E A123192 Edited, new name, and corrected by _Franck Maminirina Ramaharo_, Aug 11 2018