A123252 a(n) = smallest prime of the form 2^k + 2n - 1, k = 0, 1, ..., or 0 if there is none.
3, 5, 7, 11, 11, 13, 17, 17, 19, 23, 23, 31, 29, 29, 31, 47, 37, 37, 41, 41, 43, 47, 47, 79, 53, 53, 61, 59, 59, 61, 317, 67, 67, 71, 71, 73, 89, 79, 79, 83, 83, 211, 89, 89, 97, 107, 97, 97, 101, 101, 103, 107, 107, 109, 113, 113, 241, 131, 149, 127, 137, 127, 127, 131
Offset: 1
Keywords
Examples
For n = 4, p = 2 -> 2^2+(2*4-1) = 11, the fourth entry because 2^1+(2*4-1) which equals 9 is not a prime.
Crossrefs
Cf. A067760.
Programs
-
Mathematica
f[n_] := Block[{p = 1}, While[ !PrimeQ[2^p + 2n - 1], p++ ]; 2^p + 2n - 1]; Array[f, 64] (* Robert G. Wilson v *)
-
PARI
g2(n) = forstep(k=1,n,2,for(p=1,n,y=k+2^p;if(isprime(y),print1(y",");break)))
Formula
a(n) = 2^A067760(n-1) + 2n-1 if A067760(n-1) > 0, 0 if A067760(n-1) = 0. - Robert Israel, Jan 14 2017
Extensions
Edited and extended by Robert G. Wilson v, Nov 11 2006
Name edited by Robert Israel, Jan 14 2017
Comments