This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123301 #24 May 22 2021 21:01:52 %S A123301 1,0,0,0,1,0,0,1,1,0,0,1,34,1,0,0,1,199,199,1,0,0,1,916,7037,916,1,0, %T A123301 0,1,3889,117071,117071,3889,1,0,0,1,15982,1535601,6317926,1535601, %U A123301 15982,1,0,0,1,64747,18271947,228842801,228842801,18271947 %N A123301 Triangle read by rows: T(n,k) is the number of specially labeled bicolored nonseparable graphs with k points in one color class and n-k points in the other class. "Special" means there are separate labels 1,2,...,k and 1,2,...,n-k for the two color classes (n >= 2, k = 1,...,n-1). %D A123301 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977. %H A123301 Andrew Howroyd, <a href="/A123301/b123301.txt">Table of n, a(n) for n = 2..1276</a> (first 50 rows; first 24 rows from R. W. Robinson) %H A123301 F. Harary and R. W. Robinson, <a href="http://dx.doi.org/10.4153/CJM-1979-007-3">Labeled bipartite blocks</a>, Canad. J. Math., 31 (1979), 60-68. %F A123301 A004100(n) = (1/2) * Sum_{k=1..n-1} binomial(n,k)*T(n,k). - _Andrew Howroyd_, Jan 03 2021 %e A123301 Triangle begins: %e A123301 1; %e A123301 0, 0; %e A123301 0, 1, 0; %e A123301 0, 1, 1, 0; %e A123301 0, 1, 34, 1, 0; %e A123301 0, 1, 199, 199, 1, 0; %e A123301 0, 1, 916, 7037, 916, 1, 0; %e A123301 0, 1, 3889, 117071, 117071, 3889, 1, 0; %e A123301 ... %e A123301 Formatted as an array: %e A123301 ================================================= %e A123301 k/j | 1 2 3 4 5 6 %e A123301 --- +------------------------------------------- %e A123301 1 | 1 0 0 0 0 0 ... %e A123301 2 | 0 1 1 1 1 1 ... %e A123301 3 | 0 1 34 199 916 3889 ... %e A123301 4 | 0 1 199 7037 117071 1535601 ... %e A123301 5 | 0 1 916 117071 6317926 228842801 ... %e A123301 6 | 0 1 3889 1535601 228842801 21073662977 ... %e A123301 ... %o A123301 (PARI) %o A123301 G(n)={sum(i=0, n, x^i*(sum(j=0, n, y^j*2^(i*j)/(i!*j!)) + O(y*y^n))) + O(x*x^n)} %o A123301 \\ this switches x/y halfway through because PARI only does serreverse in x. %o A123301 B(n)={my(p=log(G(n))); p=subst(deriv(p,y), x, serreverse(x*deriv(p,x))); p=substvec(p, [x,y], [y,x]); intformal(log(x/serreverse(x*p)))} %o A123301 M(n)={my(p=B(n)); matrix(n,n,i,j,polcoef(polcoef(p,j),i)*i!*j!)} %o A123301 { my(A=M(6)); for(n=1, #A~, print(A[n,])) } \\ _Andrew Howroyd_, Jan 04 2021 %Y A123301 Central coefficients are A005334. %Y A123301 Cf. A004100, A123474, A262307. %K A123301 nonn,tabl %O A123301 2,13 %A A123301 _N. J. A. Sloane_, Nov 12 2006 %E A123301 Offset corrected by _Andrew Howroyd_, Jan 04 2021