cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123346 Mirror image of the Bell triangle A011971, which is also called the Pierce triangle or Aitken's array.

This page as a plain text file.
%I A123346 #48 Feb 16 2025 08:33:02
%S A123346 1,2,1,5,3,2,15,10,7,5,52,37,27,20,15,203,151,114,87,67,52,877,674,
%T A123346 523,409,322,255,203,4140,3263,2589,2066,1657,1335,1080,877,21147,
%U A123346 17007,13744,11155,9089,7432,6097,5017,4140,115975,94828,77821,64077,52922,43833,36401,30304,25287,21147
%N A123346 Mirror image of the Bell triangle A011971, which is also called the Pierce triangle or Aitken's array.
%C A123346 a(n,k) is k-th difference of Bell numbers, with a(n,1) = A000110(n) for  n>0, a(n,k) = a(n,k-1) - a(n-1, k-1), k<=n, with diagonal (k=n) also equal to Bell numbers (n>=0). - _Richard R. Forberg_, Jul 13 2013
%C A123346 From _Don Knuth_, Jan 29 2018: (Start)
%C A123346 If the offset here is changed from 0 to 1, then we can say:
%C A123346 a(n,k) is the number of equivalence classes of [n] in which 1 not equiv to 2, ..., 1 not equiv to k.
%C A123346 In Volume 4A, page 418, I pointed out that a(n,k) is the number of set partitions in which k is the smallest of its block.
%C A123346 And in exercise 7.2.1.5--33, I pointed out that a(n,k) is the number of equivalence relations in which 1 not equiv to 2, 2 not equiv to 3, ..., k-1 not equiv to k. (End)
%D A123346 D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).
%H A123346 Reinhard Zumkeller, <a href="/A123346/b123346.txt">Rows n = 0..100 of triangle, flattened</a>
%H A123346 A. Dil, Veli Kurt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Dil/dil5.html">Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices</a>, J. Int. Seq. 14 (2011) # 11.4.6
%H A123346 Don Knuth, <a href="/A040027/a040027.txt">Email to N. J. A. Sloane</a>, Jan 29 2018
%H A123346 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellTriangle.html">Bell Triangle</a>.
%F A123346 a(n,k) = Sum_{i=k..n} binomial(n-k,i-k)*Bell(i). - _Vladeta Jovovic_, Oct 14 2006
%e A123346 Triangle begins:
%e A123346     1
%e A123346     2   1
%e A123346     5   3   2
%e A123346    15  10   7  5
%e A123346    52  37  27 20 15
%e A123346   203 151 114 87 67 52
%e A123346   ...
%t A123346 a[n_, k_] := Sum[Binomial[n - k, i - k] BellB[i], {i, k, n}];
%t A123346 Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 03 2018 *)
%o A123346 (Haskell)
%o A123346 a123346 n k = a123346_tabl !! n !! k
%o A123346 a123346_row n = a123346_tabl !! n
%o A123346 a123346_tabl = map reverse a011971_tabl
%o A123346 -- _Reinhard Zumkeller_, Dec 09 2012
%o A123346 (Python)
%o A123346 # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
%o A123346 from itertools import accumulate
%o A123346 A123346_list = blist = [1]
%o A123346 for _ in range(2*10**2):
%o A123346     b = blist[-1]
%o A123346     blist = list(accumulate([b]+blist))
%o A123346     A123346_list += reversed(blist)
%o A123346 # _Chai Wah Wu_, Sep 02 2014, updated _Chai Wah Wu_, Sep 20 2014
%Y A123346 Cf. A011971. Borders give Bell numbers A000110. Diagonals give A005493, A011965, A011966, A011968, A011969, A046934, A011972, A094577, A095149, A106436, A108041, A108042, A108043.
%K A123346 nonn,tabl
%O A123346 0,2
%A A123346 _N. J. A. Sloane_, Oct 14 2006
%E A123346 More terms from _Alexander Adamchuk_ and _Vladeta Jovovic_, Oct 14 2006