A123349 Square array of Kekulé numbers for the mirror-symmetrical chevrons Ch(m,n), read by antidiagonals (m,n >= 0).
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 14, 10, 1, 1, 5, 30, 46, 17, 1, 1, 6, 55, 146, 117, 26, 1, 1, 7, 91, 371, 517, 251, 37, 1, 1, 8, 140, 812, 1742, 1476, 478, 50, 1, 1, 9, 204, 1596, 4878, 6376, 3614, 834, 65, 1, 1, 10, 285, 2892, 11934, 22252, 19490, 7890, 1361, 82, 1, 1, 11
Offset: 0
Examples
T(1,1)=2 because Ch(1,1) consists of a single hexagon; it has 2 perfect matchings: {1,3,5} and {2,4,6}, the edges of the hexagon being labeled consecutively by 1,2,3,4,5,6. Square array starts: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 5, 14, 30, 55, 91, 140, 204, ... 1, 10, 46, 146, 371, 812, 1596, 2892, ... 1, 17, 117, 517, 1742, 4878, 11934, 26334, ...
References
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 119-120).
Programs
-
Maple
T:=(m,n)->sum(binomial(m+i-1,i)^2,i=0..n): TT:=(m,n)->T(m-1,n-1): matrix(9,9,TT); # yields sequence in matrix form
Formula
T(m,n) = Sum_{i=0..n} binomial(m+i-1, i)^2.
Extensions
Edited by Emeric Deutsch, Oct 27 2006, Oct 28 2006
Comments