cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123352 Triangle read by rows, giving Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).

This page as a plain text file.
%I A123352 #36 Feb 24 2023 18:59:30
%S A123352 1,1,1,1,2,1,1,3,5,1,1,4,14,14,1,1,5,30,84,42,1,1,6,55,330,594,132,1,
%T A123352 1,7,91,1001,4719,4719,429,1,1,8,140,2548,26026,81796,40898,1430,1,1,
%U A123352 9,204,5712,111384,884884,1643356,379236,4862,1
%N A123352 Triangle read by rows, giving Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).
%C A123352 There is another version in A078920. - _Philippe Deléham_, Apr 12 2007 [In other words, T(n,k) = A078920(n,n-k). - _Petros Hadjicostas_, Oct 19 2019]
%H A123352 G. C. Greubel, <a href="/A123352/b123352.txt">Rows n = 0..50 of the triangle, flattened</a>
%H A123352 Paul Barry, <a href="https://arxiv.org/abs/2011.10827">Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers</a>, arXiv:2011.10827 [math.CO], 2020.
%H A123352 S. J. Cyvin and I. Gutman, <a href="https://link.springer.com/book/10.1007/978-3-662-00892-8">Kekulé structures in benzenoid hydrocarbons</a>, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
%H A123352 M. de Sainte-Catherine and G. Viennot, <a href="https://doi.org/10.1007/BFb0072509">Enumeration of certain Young tableaux with bounded height</a>, in: G. Labelle and P. Leroux (eds), <a href="https://doi.org/10.1007/BFb0072503">Combinatoire énumérative</a>, Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, Heidelberg, 1986, pp. 58-67.
%F A123352 T(n, n-1) = A000108(n).
%F A123352 T(n, n-2) = A005700(n-1).
%F A123352 T(n, n-3) = A006149(n-2).
%F A123352 T(n, n-4) = A006150(n-3).
%F A123352 T(n, n-5) = A006151(n-4).
%F A123352 Triangle T(n,k) = (-1)^C(k+1,2) * Product{1 <= i <= j <= k} (-2*(n+1)+i+j)/(i+j). - _Paul Barry_, Jan 22 2009
%F A123352 From _G. C. Greubel_, Dec 17 2021: (Start)
%F A123352 T(n, k) = Product_{j=0..n-k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
%F A123352 T(n, k) = ((n+1)!/(k+1)!)*Product_{j=0..n-k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)
%e A123352 Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
%e A123352   1;
%e A123352   1, 1;
%e A123352   1, 2,  1;
%e A123352   1, 3,  5,    1;
%e A123352   1, 4, 14,   14,    1;
%e A123352   1, 5, 30,   84,   42,    1;
%e A123352   1, 6, 55,  330,  594,  132,   1;
%e A123352   1, 7, 91, 1001, 4719, 4719, 429, 1;
%e A123352   ...
%t A123352 A123352[n_, k_]:= Product[Binomial[2*n-2*j, n-j]/Binomial[n+j+1, n-j], {j, 0, n-k-1}];
%t A123352 Table[A123352[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 17 2021 *)
%o A123352 (Sage)
%o A123352 def A123352(n,k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..n-k-1) )
%o A123352 flatten([[A123352(n,k) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Dec 17 2021
%Y A123352 Diagonals give A000108, A005700, A006149, A006150, A006151, etc.
%Y A123352 Columns include (truncated versions of) A000012 (k=0), A000027 (k=1), A000330 (k=2), A006858 (k=3), and A091962 (k=4).
%Y A123352 T(2n,n) gives A358597.
%Y A123352 Cf. A078920.
%K A123352 nonn,tabl
%O A123352 0,5
%A A123352 _N. J. A. Sloane_, Oct 14 2006
%E A123352 More terms from _Philippe Deléham_, Apr 12 2007