This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123358 #16 Apr 03 2020 07:53:00 %S A123358 1,10,125,1625,21250,278125,3640625,47656250,623828125,8166015625, %T A123358 106894531250,1399267578125,18316650390625,239768066406250, %U A123358 3138604736328125,41084869384765625,537807922363281250,7039997100830078125,92154758453369140625,1206321449279785156250,15790952777862548828125,206706255435943603515625 %N A123358 Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details). %H A123358 S. J. Cyvin and I. Gutman, <a href="https://doi.org/10.1007/978-3-662-00892-8_12">Kekulé structures in benzenoid hydrocarbons</a>, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 210, formula page 204). %H A123358 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (15,-25). %F A123358 G.f.: -(5*x-1) / (25*x^2-15*x+1). - _Colin Barker_, Aug 29 2013 %F A123358 a(n) = 5^n*A001519(n+1). - _R. J. Mathar_, Jul 26 2019 %p A123358 A123358 := proc(n) %p A123358 option remember; %p A123358 if n <= 1 then %p A123358 op(n+1,[1,10]) ; %p A123358 else %p A123358 15*procname(n-1)-25*procname(n-2) ; %p A123358 end if %p A123358 end proc: %p A123358 seq( A123358(n),n=0..30) ; # _R. J. Mathar_, Jul 26 2019 %t A123358 LinearRecurrence[{15, -25}, {1, 10}, 30] (* _Jean-François Alcover_, Apr 03 2020 *) %Y A123358 Cf. A001519. %K A123358 nonn,easy %O A123358 0,2 %A A123358 _N. J. A. Sloane_, Oct 10 2006