This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123362 #35 Jan 01 2024 11:49:37 %S A123362 1,1,11,71,481,3241,21851,147311,993121,6695281,45137291,304300151, %T A123362 2051487361,13830424921,93239986331,628592042591,4237752187201, %U A123362 28569473336161,192605600952971,1298480972398631,8753913839156641 %N A123362 a(0) = 1, a(1) = 1, a(n) = 6*a(n-1) + 5*a(n-2) for n > 1. %C A123362 Hankel transform is [1, 10, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - _Philippe Deléham_, Dec 04 2008 %H A123362 G. C. Greubel, <a href="/A123362/b123362.txt">Table of n, a(n) for n = 0..1000</a> %H A123362 Lucyna Trojnar-Spelina, Iwona Włoch, <a href="https://doi.org/10.1007/s40995-019-00757-7">On Generalized Pell and Pell-Lucas Numbers</a>, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7. %H A123362 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,5). %F A123362 a(n) = Sum_{k = 0..n} 5^(n - k)*A122542(n, k). %F A123362 G.f.: (1 - 5*x)/(1 - 6*x - 5*x^2). %t A123362 LinearRecurrence[{6, 5}, {1, 1}, 50] (* _G. C. Greubel_, Oct 12 2017 *) %o A123362 (PARI) x='x+O('x^50); Vec((1-5*x)/(1 - 6*x - 5*x^2)) \\ _G. C. Greubel_, Oct 12 2017 %K A123362 nonn,easy %O A123362 0,3 %A A123362 _Philippe Deléham_, Oct 12 2006