cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123362 a(0) = 1, a(1) = 1, a(n) = 6*a(n-1) + 5*a(n-2) for n > 1.

This page as a plain text file.
%I A123362 #35 Jan 01 2024 11:49:37
%S A123362 1,1,11,71,481,3241,21851,147311,993121,6695281,45137291,304300151,
%T A123362 2051487361,13830424921,93239986331,628592042591,4237752187201,
%U A123362 28569473336161,192605600952971,1298480972398631,8753913839156641
%N A123362 a(0) = 1, a(1) = 1, a(n) = 6*a(n-1) + 5*a(n-2) for n > 1.
%C A123362 Hankel transform is [1, 10, 0, 0, 0, 0, 0, 0, 0, 0, ...]. - _Philippe Deléham_, Dec 04 2008
%H A123362 G. C. Greubel, <a href="/A123362/b123362.txt">Table of n, a(n) for n = 0..1000</a>
%H A123362 Lucyna Trojnar-Spelina, Iwona Włoch, <a href="https://doi.org/10.1007/s40995-019-00757-7">On Generalized Pell and Pell-Lucas Numbers</a>, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
%H A123362 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,5).
%F A123362 a(n) = Sum_{k = 0..n} 5^(n - k)*A122542(n, k).
%F A123362 G.f.: (1 - 5*x)/(1 - 6*x - 5*x^2).
%t A123362 LinearRecurrence[{6, 5}, {1, 1}, 50] (* _G. C. Greubel_, Oct 12 2017 *)
%o A123362 (PARI) x='x+O('x^50); Vec((1-5*x)/(1 - 6*x - 5*x^2)) \\ _G. C. Greubel_, Oct 12 2017
%K A123362 nonn,easy
%O A123362 0,3
%A A123362 _Philippe Deléham_, Oct 12 2006