This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123477 #17 Feb 22 2021 08:12:07 %S A123477 1,0,-2,1,0,0,2,0,-2,0,0,-2,2,0,0,1,0,0,2,0,-4,0,0,0,1,0,-2,2,0,0,2,0, %T A123477 0,0,0,-2,2,0,-4,0,0,0,2,0,0,0,0,-2,3,0,0,2,0,0,0,0,-4,0,0,0,2,0,-4,1, %U A123477 0,0,2,0,0,0,0,0,2,0,-2,2,0,0,2,0,-2,0,0,-4,0,0,0,0,0,0,4,0,-4,0,0,0,2,0,0,1,0,0,2,0,0 %N A123477 Expansion of (1 - b(q)) / 3 in powers of q where b(q) is a cubic AGM theta function. %C A123477 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). %C A123477 Denoted by lambda(n) on page 4 (1.7) in Kassel and Reutenauer arXiv:1610.07793. - _Michael Somos_, Dec 10 2017 %H A123477 Seiichi Manyama, <a href="/A123477/b123477.txt">Table of n, a(n) for n = 1..1000</a> %H A123477 Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1610.07793">Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv preprint arXiv:1610.07793 [math.NT], 2016. %F A123477 Moebius transform is period 9 sequence [1, -1, -3, 1, -1, 3, 1, -1, 0, ...]. %F A123477 a(n) is multiplicative and a(p^e) = -2 if p = 3 and e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 2, 5 (mod 6). %F A123477 a(3*n + 2) = 0. a(3*n + 1) = A033687(n), a(3*n) = -2*A002324(n). %F A123477 -3*a(n) = A005928(n) unless n=0. |a(n)| = A113063(n). %e A123477 G.f. = q - 2*q^3 + q^4 + 2*q^7 - 2*q^9 - 2*q^12 + 2*q^13 + q^16 + 2*q^19 + ... %p A123477 A123477 := proc(n) %p A123477 local a,pe,p,e; %p A123477 a := 1; %p A123477 for pe in ifactors(n)[2] do %p A123477 p := op(1,pe) ; %p A123477 e := op(2,pe) ; %p A123477 if modp(p,6) = 1 then %p A123477 a := a*(e+1) ; %p A123477 elif modp(p,6) in {2,5} then %p A123477 a := a*(1+(-1)^e)/2 ; %p A123477 elif e > 0 then %p A123477 a := -2*a ; %p A123477 end if; %p A123477 end do: %p A123477 a ; %p A123477 end proc: %p A123477 seq(A123477(n),n=1..100) ; # _R. J. Mathar_, Feb 22 2021 %t A123477 a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, -3, 1, -1, 3, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* _Michael Somos_, Dec 10 2017 *) %o A123477 (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, -3, 1, -1, 3, 1, -1] [d%9+1]))}; %o A123477 (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -2, p%6==1, e+1, !(e%2))))}; %Y A123477 Cf. A002324, A005928, A033687, A113063. %K A123477 sign,mult %O A123477 1,3 %A A123477 _Michael Somos_, Sep 27 2006