cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123480 Coefficients of the series giving the best rational approximations to sqrt(3).

This page as a plain text file.
%I A123480 #28 Sep 16 2024 23:58:10
%S A123480 4,60,840,11704,163020,2270580,31625104,440480880,6135107220,
%T A123480 85451020204,1190179175640,16577057438760,230888624967004,
%U A123480 3215863692099300,44791203064423200,623860979209825504,8689262505873133860,121025814103014048540,1685672134936323545704
%N A123480 Coefficients of the series giving the best rational approximations to sqrt(3).
%C A123480 The partial sums of the series 2 - 1/a(1) - 1/a(2) - 1/a(3) - ... give the best rational approximations to sqrt(3), which constitute every second convergent of the continued fraction. The corresponding continued fractions are [1;1,2,1], [1;1,2,1,2,1], [1;1,2,1,2,1,2,1], [1;1,2,1,2,1,2,1,2,1] and so forth.
%H A123480 G. C. Greubel, <a href="/A123480/b123480.txt">Table of n, a(n) for n = 1..500</a>
%H A123480 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (15,-15,1).
%F A123480 a(n+3) = 15*a(n+2) - 15*a(n+1) + a(n).
%F A123480 a(n) = -1/3 + (1/6 + 1/12*3^(1/2))*(7 + 4*3^(1/2))^n + (1/6 - 1/12*3^(1/2))*(7 - 4*3^(1/2))^n.
%F A123480 a(n) = 4*A076139(n) = 2*A217855(n) = 1/2*A045899(n) = 4/3*A076140(n). - _Peter Bala_, Dec 31 2012
%F A123480 G.f.: -4*x/((x-1)*(x^2-14*x+1)). - _Colin Barker_, Jan 20 2013
%F A123480 a(n) = A001353(n)*A001353(n+1). - _Antonio Alberto Olivares_, Apr 06 2020
%t A123480 CoefficientList[Series[-4*x/((x - 1)*(x^2 - 14*x + 1)), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 13 2017 *)
%o A123480 (PARI) my(x='x+O('x^50)); Vec(-4*x/((x-1)*(x^2-14*x+1))) \\ _G. C. Greubel_, Oct 13 2017
%Y A123480 Cf. A123478, A123479, A029549, A123482. A045899, A076139, A076140, A217855.
%K A123480 nonn,easy
%O A123480 1,1
%A A123480 _Gene Ward Smith_, Sep 28 2006