cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123506 Sequence generated from the second nontrivial zero of the Riemann zeta function.

This page as a plain text file.
%I A123506 #28 May 31 2025 10:28:48
%S A123506 0,1,1,0,1,1,1,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1,
%T A123506 1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,
%U A123506 0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1
%N A123506 Sequence generated from the second nontrivial zero of the Riemann zeta function.
%C A123506 A123504 performs an analogous set of operations using the first nontrivial zero. A123507 records the lengths of runs in this sequence.
%C A123506 Let z = (1/2 + i*t), t = 21.0220396387... (the second nontrivial Riemann zeta function zero). Perform (1/n)^z, (n = 2, 3, 4, ...) extracting the argument. If the argument is between 0 and 180 degrees, a(n) = 1, otherwise a(n) = 0.
%D A123506 John Derbyshire, Prime Obsession, Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, Plume - a Penguin Group, NY, 2003, pp. 198-199.
%e A123506 a(7) = 1 since (1/7)^z = (0.37796447..., angle 176.201... degrees) and the argument is between 0 and 180 degrees.
%t A123506 a[n_] := Boole[Arg[1/n^ZetaZero[2]] > 0]; Array[a, 100, 2] (* _Amiram Eldar_, May 31 2025 *)
%Y A123506 Cf. A065434, A102522, A102523, A123504, A123505, A123507.
%K A123506 nonn
%O A123506 2,1
%A A123506 _Gary W. Adamson_, Oct 02 2006
%E A123506 More terms from _Amiram Eldar_, May 31 2025