cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123512 Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.

This page as a plain text file.
%I A123512 #22 Nov 13 2017 09:12:26
%S A123512 1,10,105,1190,14630,194796,2798670,43204260,713655855,12564061510,
%T A123512 234896893231,4648313235930,97068707038940,2133251854548920,
%U A123512 49215687006553740,1189262114277026856,30037396074996304365
%N A123512 Arises in the normal ordering of functions of a*(a+)*a, where a and a+ are the boson annihilation and creation operators, respectively.
%H A123512 G. C. Greubel, <a href="/A123512/b123512.txt">Table of n, a(n) for n = 0..439</a>
%F A123512 E.g.f.: (1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)).
%F A123512 From _Vaclav Kotesovec_, Nov 13 2017: (Start)
%F A123512 Recurrence: n*a(n) = 2*n*(n+4)*a(n-1) - (n-1)*(n+3)*(n+4)*a(n-2).
%F A123512 a(n) ~ exp(2*sqrt(n)-n-1/2) * n^(n + 17/4) / (3*2^(7/2)) * (1 + 31/(48*sqrt(n))).
%F A123512 (End)
%t A123512 CoefficientList[ Series[(1/(1 - x)^5)*Exp[x/(1 - x)]LaguerreL[4, -x/(1 - x)], {x,0,16}], x]*Range[0, 16]! (* _Robert G. Wilson v_, Oct 03 2006 *)
%o A123512 (PARI)
%o A123512 LaguerreL(n,v='x) = {
%o A123512   my(x='x+O('x^(n+1)), t='t);
%o A123512   subst(polcoeff(exp(-x*t/(1-x))/(1-x), n), 't, v);
%o A123512 };
%o A123512 N=17;x='x+O('x^N); Vec(serlaplace((1/(1-x)^5)*exp(x/(1-x))*LaguerreL(4,-x/(1-x)))) \\ _Gheorghe Coserea_, Oct 26 2017
%Y A123512 Cf.: A002720, A052852, A123510, A123511.
%K A123512 nonn
%O A123512 0,2
%A A123512 _Karol A. Penson_, Oct 02 2006
%E A123512 a(0)=1 prepended by _Gheorghe Coserea_, Oct 26 2017