This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123514 #11 Jan 21 2022 07:54:03 %S A123514 1,0,2,4,0,3,0,10,0,4,14,0,18,0,5,0,40,0,28,0,6,48,0,81,0,40,0,7,0, %T A123514 150,0,140,0,54,0,8,165,0,330,0,220,0,70,0,9,0,550,0,616,0,324,0,88,0, %U A123514 10,572,0,1287,0,1040,0,455,0,108,0,11,0,2002,0,2548,0,1638,0,616,0,130,0,12 %N A123514 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 321 exactly once (n>=3; 1<=k<=n-2). %H A123514 G. C. Greubel, <a href="/A123514/b123514.txt">Rows n = 3..53 of the triangle, flattened</a> %H A123514 E. Deutsch, A. Robertson and D. Saracino, <a href="https://doi.org/10.1016/j.ejc.2004.09.006">Refined restricted involutions</a>, European Journal of Combinatorics 28 (2007), 481-498 (see pp. 493 and 498). %F A123514 T(n,k) = k*(k+3)*binomial(n+1,(n-k-2)/2)/(n+1), for n>=3, 1<=k<=n-2, n-k even. %F A123514 From _G. C. Greubel_, Jan 15 2022: (Start) %F A123514 Sum_{k=1..n-2} T(n, k) = A191389(n+1). %F A123514 Sum_{k=1..floor((n-1)/2)} T(n-k, k) = ((1-(-1)^n)/2)*(12/(n+9))*binomial(n+2, (n- 3)/2). (End) %e A123514 T(4,2)=2 because we have 1432 and 3214 (also 4231 is an involution with 2 fixed points but contains twice the pattern 321: 421 and 431). %e A123514 Triangle starts: %e A123514 1; %e A123514 0, 2; %e A123514 4, 0, 3; %e A123514 0, 10, 0, 4; %e A123514 14, 0, 18, 0, 5; %e A123514 0, 40, 0, 28, 0, 6; %e A123514 48, 0, 81, 0, 40, 0, 7; %e A123514 0, 150, 0, 140, 0, 54, 0, 8; %e A123514 165, 0, 330, 0, 220, 0, 70, 0, 9; %e A123514 0, 550, 0, 616, 0, 324, 0, 88, 0, 10; %e A123514 572, 0, 1287, 0, 1040, 0, 455, 0, 108, 0, 11; %p A123514 T:=proc(n,k) if n-k mod 2 = 0 and k<=n then k*(k+3)*binomial(n+1,(n-k)/2-1)/(n+1) else 0 fi end: for n from 3 to 15 do seq(T(n,k),k=1..n-2) od; # yields sequence in triangular form %t A123514 T[n_, k_]:= ((1+(-1)^(n-k))/2)*k*(k+3)*Binomial[n+1, (n-k-2)/2]/(n+1); %t A123514 Table[T[n, k], {n, 3, 15}, {k, n-2}]//Flatten (* _G. C. Greubel_, Jan 15 2022 *) %o A123514 (Magma) %o A123514 A123514:= func< n,k | ((1+(-1)^(n-k))/(2*(n+1)))*k*(k+3)*Binomial(n+1, Floor((n-k-2)/2)) >; %o A123514 [A123514(n,k): k in [1..n-2], n in [3..15]]; // _G. C. Greubel_, Jan 15 2022 %o A123514 (Sage) %o A123514 def A123514(n,k): return ((1+(-1)^(n-k))/(2*(n+1)))*k*(k+3)*binomial(n+1, (n-k-2)//2) %o A123514 flatten([[A123514(n,k) for k in (1..n-2)] for n in (3..15)]) # _G. C. Greubel_, Jan 15 2022 %Y A123514 Cf. A003517, A112554, A123515, A191389. %K A123514 nonn,tabl %O A123514 3,3 %A A123514 _Emeric Deutsch_, Oct 13 2006