This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123515 #9 Jan 16 2022 11:08:59 %S A123515 1,0,2,2,0,3,0,8,0,4,5,0,18,0,5,0,26,0,32,0,6,12,0,75,0,50,0,7,0,76,0, %T A123515 164,0,72,0,8,28,0,264,0,305,0,98,0,9,0,208,0,680,0,510,0,128,0,10,64, %U A123515 0,840,0,1460,0,791,0,162,0,11,0,544,0,2480,0,2772,0,1160,0,200,0,12 %N A123515 Triangle read by rows: T(n,k) is the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 231 exactly once (n>=4, 2<=k<=n-2). %C A123515 Also the number of involutions of {1,2,...,n} with exactly k fixed points and which contain the pattern 312 exactly once (n>=4, 2<=k<=n-2). Example: T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 312: 523, 524 and 534). %H A123515 G. C. Greubel, <a href="/A123515/b123515.txt">Rows n = 4..54 of the triangle, flattened</a> %H A123515 E. Deutsch, A. Robertson and D. Saracino, <a href="https://doi.org/10.1016/j.ejc.2004.09.006">Refined restricted involutions</a>, European Journal of Combinatorics 28 (2007), 481-498 (see pp. 492 and 498). %F A123515 T(n, k) = 2^((n-k-6)/2)*(k-1)*( binomial((n+k)/2-2, (n-k)/2-1) + 2*binomial((n+k)/2-3, (n-k)/2-1) + binomial((n+k)/2-4, (n-k)/2-1) ) for n>=4, n+k even; T(n,k) = 0 otherwise. %F A123515 From _G. C. Greubel_, Jan 16 2022: (Start) %F A123515 Sum_{k=2..n-4} T(n, k) = A045623(n). %F A123515 Sum_{k=2..floor(n/2)} T(n-k+2, k) = (1/9)*[n=4] + (1+(-1)^n)*n*3^((n-8)/2). (End) %e A123515 T(5,3)=2 because we have 15342 and 42315 (also the involution 52341 has 3 fixed points but it contains 3 times the pattern 231: 231, 241 and 341). %e A123515 Triangle starts: %e A123515 1; %e A123515 0, 2; %e A123515 2, 0, 3; %e A123515 0, 8, 0, 4; %e A123515 5, 0, 18, 0, 5; %e A123515 0, 26, 0, 32, 0, 6; %e A123515 12, 0, 75, 0, 50, 0, 7; %e A123515 0, 76, 0, 164, 0, 72, 0, 8; %e A123515 28, 0, 264, 0, 305, 0, 98, 0, 9; %e A123515 0, 208, 0, 680, 0, 510, 0, 128, 0, 10; %e A123515 64, 0, 840, 0, 1460, 0, 791, 0, 162, 0, 11; %e A123515 0, 544, 0, 2480, 0, 2772, 0, 1160, 0, 200, 0, 12; %p A123515 T:=proc(n,k) if n>=4 and n+k mod 2 = 0 then (k-1)*2^((n-k-6)/2)*(binomial((n+k)/2-2,(n-k)/2-1)+2*binomial((n+k)/2-3, (n-k)/2-1)+binomial((n+k)/2-4,(n-k)/2-1)) else 0 fi end: for n from 4 to 16 do seq(T(n,k),k=2..n-2) od; # yields sequence in triangular form %t A123515 T[n_, k_]:= ((1+(-1)^(n-k))/2)*2^((n-k-6)/2)*(k-1)* Sum[Binomial[2, j]* %t A123515 Binomial[(n+k-2*(j+2))/2, (n-k-2)/2], {j, 0, 2}]; %t A123515 Table[T[n, k], {n,4,16}, {k,2,n-2}]//Flatten (* _G. C. Greubel_, Jan 16 2022 *) %o A123515 (Sage) %o A123515 def A123515(n,k): return ((1+(-1)^(n+k))/2)*2^((n-k-6)/2)*(k-1)*sum( binomial(2, j)*binomial((n+k-2*j-2)/2, (n-k-2)/2) for j in (0..2) ) %o A123515 flatten([[A123515(n,k) for k in (2..n-2)] for n in (4..16)]) # _G. C. Greubel_, Jan 16 2022 %Y A123515 Cf. A045623, A120926, A123514, A112554. %K A123515 nonn,tabl %O A123515 4,3 %A A123515 _Emeric Deutsch_, Oct 13 2006