This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123542 #12 May 23 2024 04:24:59 %S A123542 1,15,10,1,70,492,690,395,105,15,1,5040,28595,58905,63990,42392,18732, %T A123542 5880,1330,210,21,1,16800,442680,2485920,6629056,10684723,11716068, %U A123542 9409806,5824980,2872317,1147576,373156,98112,20475,3276 %N A123542 Triangular array T(n,k) giving number of 3-connected graphs with n labeled nodes and k edges (n >= 4, ceiling(3*n/2) <= k <= n(n-1)/2). %D A123542 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977. %H A123542 R. W. Robinson, <a href="/A123542/b123542.txt">Rows 4 through 15, flattened</a> (row 15 is incomplete). %H A123542 T. R. S. Walsh, <a href="https://doi.org/10.1016/0095-8956(82)90072-7">Counting labeled three-connected and homeomorphically irreducible two-connected graphs</a>, J. Combin. Theory Ser. B 32 (1982), no. 1, 1-11, Table 1. %e A123542 Triangle begins: %e A123542 n = 4 %e A123542 k = 6 : 1 %e A123542 Total( 4) = 1 %e A123542 n = 5 %e A123542 k = 8 : 15 %e A123542 k = 9 : 10 %e A123542 k = 10 : 1 %e A123542 Total( 5) = 26 %e A123542 n = 6 %e A123542 k = 9 : 70 %e A123542 k = 10 : 492 %e A123542 k = 11 : 690 %e A123542 k = 12 : 395 %e A123542 k = 13 : 105 %e A123542 k = 14 : 15 %e A123542 k = 15 : 1 %e A123542 Total( 6) = 1768 %e A123542 n = 7 %e A123542 k = 11 : 5040 %e A123542 k = 12 : 28595 %e A123542 k = 13 : 58905 %e A123542 k = 14 : 63990 %e A123542 k = 15 : 42392 %e A123542 k = 16 : 18732 %e A123542 k = 17 : 5880 %e A123542 k = 18 : 1330 %e A123542 k = 19 : 210 %e A123542 k = 20 : 21 %e A123542 k = 21 : 1 %e A123542 Total( 7) = 225096 %Y A123542 Row sums give A005644. Cf. A123527, A123534. %K A123542 nonn,tabf %O A123542 4,2 %A A123542 _N. J. A. Sloane_, Nov 13 2006