A123545 Triangle read by rows: T(n,k) = number of unlabeled connected graphs on n nodes with degree >= 3 at each node (n >= 1, 0 <= k <= n(n-1)/2).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 5, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 18, 30, 34, 29, 17, 9, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 35, 136, 309, 465, 505, 438, 310, 188, 103, 52, 23
Offset: 1
Examples
Triangle begins: n = 1 k = 0 : 0 ************************ TOTAL (n = 1) = 0 n = 2 k = 0 : 0 k = 1 : 0 ************************ TOTAL (n = 2) = 0 n = 3 k = 0 : 0 k = 1 : 0 k = 2 : 0 k = 3 : 0 ************************ TOTAL (n = 3) = 0 n = 4 k = 0 : 0 k = 1 : 0 k = 2 : 0 k = 3 : 0 k = 4 : 0 k = 5 : 0 k = 6 : 1 ************************ TOTAL (n = 4) = 1 n = 5 k = 0 : 0 k = 1 : 0 k = 2 : 0 k = 3 : 0 k = 4 : 0 k = 5 : 0 k = 6 : 0 k = 7 : 0 k = 8 : 1 k = 9 : 1 k = 10 : 1 ************************ TOTAL (n = 5) = 3 From _Hugo Pfoertner_, Nov 22 2020: (Start) Transposed table: Nodes Sums 4 5 6 7 8 9 10 11 12 13 |A338604 Edges-----------------------------------------------------|------- 6 | 1 . . . . . . . . . | 1 7 | . . . . . . . . . . | 0 8 | . 1 . . . . . . . . | 1 9 | . 1 2 . . . . . . . | 3 10 | . 1 4 . . . . . . . | 5 11 | . . 5 4 . . . . . . | 9 12 | . . 4 18 5 . . . . . | 27 13 | . . 2 30 35 . . . . . | 67 14 | . . 1 34 136 27 . . . . | 198 15 | . . 1 29 309 288 19 . . . | 646 16 | . . . 17 465 1377 357 . . . | 2216 17 | . . . 9 505 3978 3478 208 . . | 8178 18 | . . . 5 438 7956 18653 4958 85 . | 32085 19 | . . . 2 310 11904 65011 50575 4291 . | 132093 20 | . . . 1 188 14134 163812 302854 85421 1958 | 568368 (End)
References
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.
Links
- R. W. Robinson, Rows 1 through 14, flattened