cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123545 Triangle read by rows: T(n,k) = number of unlabeled connected graphs on n nodes with degree >= 3 at each node (n >= 1, 0 <= k <= n(n-1)/2).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 5, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 18, 30, 34, 29, 17, 9, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 35, 136, 309, 465, 505, 438, 310, 188, 103, 52, 23
Offset: 1

Views

Author

N. J. A. Sloane, Nov 13 2006

Keywords

Examples

			Triangle begins:
n = 1
k = 0 : 0
************************ TOTAL (n = 1) = 0
n = 2
k = 0 : 0
k = 1 : 0
************************ TOTAL (n = 2) = 0
n = 3
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
************************ TOTAL (n = 3) = 0
n = 4
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
k = 4 : 0
k = 5 : 0
k = 6 : 1
************************ TOTAL (n = 4) = 1
n = 5
k = 0 : 0
k = 1 : 0
k = 2 : 0
k = 3 : 0
k = 4 : 0
k = 5 : 0
k = 6 : 0
k = 7 : 0
k = 8 : 1
k = 9 : 1
k = 10 : 1
************************ TOTAL (n = 5) = 3
From _Hugo Pfoertner_, Nov 22 2020: (Start)
Transposed table:
                            Nodes                             Sums
       4  5  6   7    8      9      10      11     12    13 |A338604
  Edges-----------------------------------------------------|-------
   6 | 1  .  .   .    .      .       .       .      .     . |      1
   7 | .  .  .   .    .      .       .       .      .     . |      0
   8 | .  1  .   .    .      .       .       .      .     . |      1
   9 | .  1  2   .    .      .       .       .      .     . |      3
  10 | .  1  4   .    .      .       .       .      .     . |      5
  11 | .  .  5   4    .      .       .       .      .     . |      9
  12 | .  .  4  18    5      .       .       .      .     . |     27
  13 | .  .  2  30   35      .       .       .      .     . |     67
  14 | .  .  1  34  136     27       .       .      .     . |    198
  15 | .  .  1  29  309    288      19       .      .     . |    646
  16 | .  .  .  17  465   1377     357       .      .     . |   2216
  17 | .  .  .   9  505   3978    3478     208      .     . |   8178
  18 | .  .  .   5  438   7956   18653    4958     85     . |  32085
  19 | .  .  .   2  310  11904   65011   50575   4291     . | 132093
  20 | .  .  .   1  188  14134  163812  302854  85421  1958 | 568368
(End)
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A007112. Cf. A123546, A338604.