cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123562 Pascal-(1,-3,1) array, read by antidiagonals.

This page as a plain text file.
%I A123562 #25 Oct 16 2017 02:04:15
%S A123562 1,1,1,1,-1,1,1,-3,-3,1,1,-5,-3,-5,1,1,-7,1,1,-7,1,1,-9,9,11,9,-9,1,1,
%T A123562 -11,21,17,17,21,-11,1,1,-13,37,11,1,11,37,-13,1,1,-15,57,-15,-39,-39,
%U A123562 -15,57,-15,1,1,-17,81,-69,-87,-81,-87,-69,81,-17,1
%N A123562 Pascal-(1,-3,1) array, read by antidiagonals.
%C A123562 Riordan array (1/(1-x), x*(1-3x)/(1-x)).
%H A123562 G. C. Greubel, <a href="/A123562/b123562.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F A123562 Sum_{k=0..n} T(n,k) = A088137(n+1).
%F A123562 T(n,k) = T(n-1,k-1) + T(n-1,k) - 3*T(n-2,k-1), n>0.
%F A123562 From _Paul Barry_, Jan 24 2011: (Start)
%F A123562 T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k,j)*(-3)^j.
%F A123562 T(n,k) = [k<=n]*Hypergeometric2F1(-k,k-n,1,-2). (End)
%F A123562 E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(-2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 4*x + 4*x^2/2) = 1 - 3*x - 3*x^2/2! + x^3/3! + 9*x^4/4! + 21*x^5/5! + .... - _Peter Bala_, Mar 05 2017
%e A123562 Triangle begins:
%e A123562   1;
%e A123562   1,   1;
%e A123562   1,  -1,   1;
%e A123562   1,  -3,  -3,   1;
%e A123562   1,  -5,  -3,  -5,   1;
%e A123562   1,  -7,   1,   1,  -7,   1;
%e A123562   1,  -9,   9,  11,   9,  -9,  1;
%e A123562   1, -11,  21,  17,  17,  21, -11,   1;
%e A123562   1, -13,  37,  11,   1,  11,  37, -13,   1;
%t A123562 T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Oct 15 2017 *)
%o A123562 (PARI) for(n=0,10, for(k=0,n, print1(sum(j=0,n, binomial(n-j,k)*  binomial(k,j)*(-3)^j), ", "))) \\ _G. C. Greubel_, Oct 15 2017
%Y A123562 Cf. Pascal (1,m,1) array: A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).
%K A123562 sign,tabl,easy
%O A123562 0,8
%A A123562 _Philippe Deléham_, Nov 12 2006