This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123564 #19 Jun 08 2025 01:12:10 %S A123564 2,3,1,1,2,3,1,1,2,2,3,1,2,2,3,1,2,2,3,1,1,2,3,1,1,2,2,3,1,2,2,3,1,2, %T A123564 2,3,1,1,2,3,1,1,2,3,1,1,2,2,3,1,2,2,3,1,1,2,3,1,1,2,3,1,1,2,2,3,1,2, %U A123564 2,3,1,1,2,3,1,1,2,3,1,1,2,2,3,1,2,2,3,1 %N A123564 The infinite Fibonacci word reencoded by writing successive non-overlapping pairs of bits as decimal numbers. %C A123564 The algorithm used here suggests multiple variations such as using more than 2 bits, allowing overlap of successive subwords, using other numbers for the encoding of subwords or using other binary sequences. (E.g. overlapping: a(n) = 2*A005614(n) + A005614(n+1) ) %C A123564 Essentially equal to A143667. - _Michel Dekking_, Sep 26 2017 %H A123564 G. C. Greubel, <a href="/A123564/b123564.txt">Table of n, a(n) for n = 1..5000</a> %H A123564 Michel Dekking and Mike Keane, <a href="https://arxiv.org/abs/2202.13548">Two-block substitutions and morphic words</a>, arXiv:2202.13548 [math.CO], 2022. %F A123564 f = (sqrt(5)-1)/2; m = 2*n; a(n) = floor(m*f) - 2*floor((m-1)*f) + floor((m+1)*f); %F A123564 a(n) = 2*A005614(2n-1) + A005614(2n), using the infinite Fibonacci word A005614. %e A123564 a(1) = 2*1+0 = 2; %e A123564 a(2) = 2*1+1 = 3; %e A123564 a(3) = 2*0+1 = 1. %t A123564 f := 1/GoldenRatio; T[n_] := Floor[2*n*f] - 2*Floor[(2*n - 1)*f] + Floor[(2*n + 1)*f]; Table[T[n], {n, 100}] (* _G. C. Greubel_, Oct 16 2017 *) %o A123564 (PARI) f=(sqrt(5)-1)/2; a(n)= my(m=2*n); floor(m*f)-2*floor((m-1)*f)+floor((m+1)*f); \\ _Michel Marcus_, Sep 26 2017 %Y A123564 Cf. A005614, A143667 %K A123564 easy,nonn %O A123564 1,1 %A A123564 _Alexandre Losev_, Nov 12 2006