cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123573 The Kruskal-Macaulay function K_4(n).

Original entry on oeis.org

0, 4, 7, 9, 10, 10, 13, 15, 16, 16, 18, 19, 19, 20, 20, 20, 23, 25, 26, 26, 28, 29, 29, 30, 30, 30, 32, 33, 33, 34, 34, 34, 35, 35, 35, 35, 38, 40, 41, 41, 43, 44, 44, 45, 45, 45, 47, 48, 48, 49, 49, 49, 50, 50, 50, 50, 52, 53, 53, 54, 54, 54, 55, 55, 55, 55, 56, 56, 56, 56, 56
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2006

Keywords

Comments

Write n (uniquely) as n = C(n_t,t) + C(n_{t-1},t-1) + ... + C(n_v,v) where n_t > n_{t-1} > ... > n_v >= v >= 1. Then K_t(n) = C(n_t,t-1) + C(n_{t-1},t-2) + ... + C(n_v,v-1).

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.

Crossrefs

For K_i(n), i=1, 2, 3, 4, 5 see A000012, A003057, A123572, A123573, A123574.

Programs

  • Maple
    lowpol := proc(n,t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x,t) <= n do x := x+1 ; od ; RETURN(x-1) ; end: C := proc(n,t) local nresid,tresid,m,a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid,tresid) ; a := [op(a),m] ; nresid := nresid - binomial(m,tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end: K := proc(n,t) local a ; a := C(n,t) ; add( binomial(op(i,a),t-i),i=1..nops(a)) ; end: A123573 := proc(n) K(n,4) ; end: for n from 0 to 80 do printf("%d, ",A123573(n)) ; od ; # R. J. Mathar, May 18 2007
  • Mathematica
    lowpol[n_, t_] := Module[{x}, x = Floor[(n*t!)^(1/t)]; While[Binomial[x, t] <= n, x = x + 1]; x - 1];
    c[n_, t_] := Module[{n0 = n, t0 = t, m, a = {}}, While[n0 > 0, m = lowpol[n0, t0]; a = Append[a, m]; n0 = n0 - Binomial[m, t0]; t0 = t0 - 1]; a];
    K[n_, t_] := Module[{a}, a = c[n, t]; Sum[Binomial[a[[i]], t - i], {i, 1, Length[a]}]];
    A123573[n_] := K[n, 4];
    Table[A123573[n], {n, 0, 70}] (* Jean-François Alcover, Mar 30 2023, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, May 18 2007

A123574 The Kruskal-Macaulay function K_5(n).

Original entry on oeis.org

0, 5, 9, 12, 14, 15, 15, 19, 22, 24, 25, 25, 28, 30, 31, 31, 33, 34, 34, 35, 35, 35, 39, 42, 44, 45, 45, 48, 50, 51, 51, 53, 54, 54, 55, 55, 55, 58, 60, 61, 61, 63, 64, 64, 65, 65, 65, 67, 68, 68, 69, 69, 69, 70, 70, 70, 70, 74, 77, 79, 80, 80, 83, 85, 86, 86, 88, 89, 89, 90
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2006

Keywords

Comments

Write n (uniquely) as n = C(n_t,t) + C(n_{t-1},t-1) + ... + C(n_v,v) where n_t > n_{t-1} > ... > n_v >= v >= 1. Then K_t(n) = C(n_t,t-1) + C(n_{t-1},t-2) + ... + C(n_v,v-1).

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.

Crossrefs

For K_i(n), i=1, 2, 3, 4, 5 see A000012, A003057, A123572, A123573, A123574.

Programs

  • Maple
    lowpol := proc(n,t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x,t) <= n do x := x+1 ; od ; RETURN(x-1) ; end: C := proc(n,t) local nresid,tresid,m,a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid,tresid) ; a := [op(a),m] ; nresid := nresid - binomial(m,tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end: K := proc(n,t) local a ; a := C(n,t) ; add( binomial(op(i,a),t-i),i=1..nops(a)) ; end: A123574 := proc(n) K(n,5) ; end: for n from 0 to 80 do printf("%d, ",A123574(n)) ; od ; # R. J. Mathar, May 18 2007
  • Mathematica
    lowpol[n_, t_] := Module[{x}, x = Floor[(n*t!)^(1/t)]; While[Binomial[x, t] <= n, x = x + 1]; x - 1];
    c[n_, t_] := Module[{n0 = n, t0 = t, m, a = {}}, While[n0 > 0, m = lowpol[n0, t0]; a = Append[a, m]; n0 = n0 - Binomial[m, t0]; t0 = t0 - 1]; a];
    K[n_, t_] := Module[{a}, a = c[n, t]; Sum[Binomial[a[[i]], t - i], {i, 1, Length[a]}]];
    A123574[n_] := K[n, 5];
    Table[A123574[n], {n, 0, 69}] (* Jean-François Alcover, Mar 30 2023, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, May 18 2007
Showing 1-2 of 2 results.