A123573 The Kruskal-Macaulay function K_4(n).
0, 4, 7, 9, 10, 10, 13, 15, 16, 16, 18, 19, 19, 20, 20, 20, 23, 25, 26, 26, 28, 29, 29, 30, 30, 30, 32, 33, 33, 34, 34, 34, 35, 35, 35, 35, 38, 40, 41, 41, 43, 44, 44, 45, 45, 45, 47, 48, 48, 49, 49, 49, 50, 50, 50, 50, 52, 53, 53, 54, 54, 54, 55, 55, 55, 55, 56, 56, 56, 56, 56
Offset: 0
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.
Programs
-
Maple
lowpol := proc(n,t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x,t) <= n do x := x+1 ; od ; RETURN(x-1) ; end: C := proc(n,t) local nresid,tresid,m,a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid,tresid) ; a := [op(a),m] ; nresid := nresid - binomial(m,tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end: K := proc(n,t) local a ; a := C(n,t) ; add( binomial(op(i,a),t-i),i=1..nops(a)) ; end: A123573 := proc(n) K(n,4) ; end: for n from 0 to 80 do printf("%d, ",A123573(n)) ; od ; # R. J. Mathar, May 18 2007
-
Mathematica
lowpol[n_, t_] := Module[{x}, x = Floor[(n*t!)^(1/t)]; While[Binomial[x, t] <= n, x = x + 1]; x - 1]; c[n_, t_] := Module[{n0 = n, t0 = t, m, a = {}}, While[n0 > 0, m = lowpol[n0, t0]; a = Append[a, m]; n0 = n0 - Binomial[m, t0]; t0 = t0 - 1]; a]; K[n_, t_] := Module[{a}, a = c[n, t]; Sum[Binomial[a[[i]], t - i], {i, 1, Length[a]}]]; A123573[n_] := K[n, 4]; Table[A123573[n], {n, 0, 70}] (* Jean-François Alcover, Mar 30 2023, after R. J. Mathar *)
Extensions
More terms from R. J. Mathar, May 18 2007
Comments