A123576 The Kruskal-Macaulay function L_4(n).
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 6, 6, 6, 7, 7, 7, 8, 8, 9, 11, 11, 11, 12, 12, 13, 15, 15, 16, 18, 21, 21, 21, 21, 22, 22, 22, 23, 23, 24, 26, 26, 26, 27, 27, 28, 30, 30, 31, 33, 36, 36, 36, 37, 37, 38, 40, 40, 41, 43, 46, 46, 47, 49, 52, 56, 56, 56, 56, 57, 57, 57, 58
Offset: 0
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.
Programs
-
Maple
lowpol := proc(n,t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x,t) <= n do x := x+1 ; od ; RETURN(x-1) ; end: C := proc(n,t) local nresid,tresid,m,a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid,tresid) ; a := [op(a),m] ; nresid := nresid - binomial(m,tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end: L := proc(n,t) local a ; a := C(n,t) ; add( binomial(op(i,a),t+2-i),i=1..nops(a)) ; end: A123576 := proc(n) L(n,4) ; end: for n from 0 to 80 do printf("%d, ",A123576(n)) ; od ; # R. J. Mathar, May 18 2007
-
Mathematica
(+ The function L(n,t) is defined in A123575 *) a[n_] := L[n, 4]; a /@ Range[0, 80] (* Jean-François Alcover, Mar 29 2020 *)
Extensions
More terms from R. J. Mathar, May 18 2007
Comments