A123579 The Kruskal-Macaulay function M_3(n).
0, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27
Offset: 0
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3, Section 7.2.1.3, Table 3.
Links
- Samuel Harkness, Table of n, a(n) for n = 0..10000
- B. M. Abrego, S. Fernandez-Merchant, and B. Llano, An Inequality for Macaulay Functions, J. Int. Seq. 14 (2011) # 11.7.4.
Crossrefs
Programs
-
Maple
lowpol := proc(n,t) local x::integer ; x := floor( (n*factorial(t))^(1/t)) ; while binomial(x,t) <= n do x := x+1 ; od ; RETURN(x-1) ; end: C := proc(n,t) local nresid,tresid,m,a ; nresid := n ; tresid := t ; a := [] ; while nresid > 0 do m := lowpol(nresid,tresid) ; a := [op(a),m] ; nresid := nresid - binomial(m,tresid) ; tresid := tresid-1 ; od ; RETURN(a) ; end: M := proc(n,t) local a ; a := C(n,t) ; add( binomial(op(i,a)-1,t-i),i=1..nops(a)) ; end: A123579 := proc(n) M(n,3) ; end: for n from 0 to 120 do printf("%d, ",A123579(n)) ; od ; # R. J. Mathar, Mar 14 2007
-
Mathematica
c = 0; T = {0}; For[r = 1, r <= 7, r++, For[n = 1, n <= r, n++, c++; For[m = 1, m <= n, m++, AppendTo[T, c]]]]; Take[T, 75] (* Samuel Harkness, Sep 30 2022 *)
Comments