This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123583 #31 Sep 08 2022 08:45:28 %S A123583 0,1,0,-1,0,0,4,0,-4,1,0,-9,0,24,0,-16,0,0,16,0,-80,0,128,0,-64,1,0, %T A123583 -25,0,200,0,-560,0,640,0,-256,0,0,36,0,-420,0,1792,0,-3456,0,3072,0, %U A123583 -1024,1,0,-49,0,784,0,-4704,0,13440,0,-19712,0,14336,0,-4096 %N A123583 Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Chebyshev polynomial of the first kind. %C A123583 All row sum are zero. Row sums of absolute values are in A114619. - _Klaus Brockhaus_, May 29 2009 %H A123583 G. C. Greubel, <a href="/A123583/b123583.txt">Rows n = 0..50, flattened</a> %H A123583 Gareth Jones and David Singerman, <a href="https://doi.org/10.1112/blms/28.6.561">Belyi Functions, Hypermaps and Galois Groups</a>, Bull. London Math. Soc., 28 (1996), 561-590. %H A123583 Yuri Matiyasevich, <a href="http://logic.pdmi.ras.ru/~yumat/Journal/Chebyshev/chebysh.htm">Generalized Chebyshev polynomials</a>. %H A123583 G. B. Shabat and I. A. Voevodskii, <a href="https://www.math.ias.edu/Voevodsky/files/files-annotated/Dropbox/Published%20versions/drawing_curves_published.pdf">Drawing curves over number fields</a>, The Grothendieck Festschift, vol. 3, Birkhäuser, 1990, 199-227. %H A123583 G. B. Shabat and A. Zvonkin, <a href="https://www.labri.fr/perso/zvonkin/Research/shabzvon.pdf">Plane trees and algebraic numbers</a>, Contemporary Math., 1994, vol. 178, 233-275. %F A123583 T(n, k) = coefficients of ( 1 - ChebyshevT(n, x)^2 ). %F A123583 T(n, k) = coefficients of ( (1 - ChebyshevT(2*n, x))/2 ). - _G. C. Greubel_, Jul 02 2021 %e A123583 First few rows of the triangle are: %e A123583 0; %e A123583 1, 0, -1; %e A123583 0, 0, 4, 0, -4; %e A123583 1, 0, -9, 0, 24, 0, -16; %e A123583 0, 0, 16, 0, -80, 0, 128, 0, -64; %e A123583 1, 0, -25, 0, 200, 0, -560, 0, 640, 0, -256; %e A123583 0, 0, 36, 0, -420, 0, 1792, 0, -3456, 0, 3072, 0, -1024; %e A123583 First few polynomials (p(n, x) = 1 - T_{n}(x)^2) are: %e A123583 p(0, x) = 0, %e A123583 p(1, x) = 1 - x^2, %e A123583 p(2, x) = 0 4*x^2 - 4*x^4, %e A123583 p(3, x) = 1 - 9*x^2 + 24*x^4 - 16*x^6, %e A123583 p(4, x) = 0 16*x^2 - 80*x^4 + 128*x^6 - 64*x^8, %e A123583 p(5, x) = 1 - 25*x^2 + 200*x^4 - 560*x^6 + 640*x^8 - 256*x^10, %e A123583 p(6, x) = 0 36*x^2 - 420*x^4 + 1792*x^6 - 3456*x^8 + 3072*x^10 - 1024*x^12. %t A123583 (* First program *) %t A123583 Table[CoefficientList[1 - ChebyshevT[n, x]^2, x], {n, 0, 10}]//Flatten %t A123583 (* Second program *) %t A123583 T[n_, k_]:= T[n, k]= SeriesCoefficient[(1 -ChebyshevT[2*n,x])/2, {x,0,k}]; %t A123583 Table[T[n, k], {n,0,12}, {k,0,2*n}]//Flatten (* _G. C. Greubel_, Jul 02 2021 *) %o A123583 (Magma) [0] cat &cat[ Coefficients(1-ChebyshevT(n)^2): n in [1..8] ]; %o A123583 (PARI) v=[]; for(n=0, 8, v=concat(v, vector(2*n+1, j, polcoeff(1-poltchebi(n)^2, j-1)))); v %o A123583 (Sage) %o A123583 def T(n): return ( (1 - chebyshev_T(2*n, x))/2 ).full_simplify().coefficients(sparse=False) %o A123583 flatten([T(n) for n in (0..12)]) # _G. C. Greubel_, Jul 02 2021 %Y A123583 Cf. A123588, A156647. %K A123583 tabf,sign %O A123583 0,7 %A A123583 _Gary W. Adamson_ and _Roger L. Bagula_, Nov 12 2006 %E A123583 Edited by _N. J. A. Sloane_, Mar 09 2008