This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123634 #6 Dec 31 2016 11:52:55 %S A123634 1,1,1,1,1,1,1,2,0,0,1,4,0,0,-1,1,8,4,-2,-1,-1,1,17,7,3,-3,-1,-1,1,37, %T A123634 25,6,-6,-4,0,0,1,82,121,-38,-4,-16,0,0,1,1,185,461,160,-104,-64,-16, %U A123634 4,1,1,1,423,2001,588,-144,-360,-60,-10,5,1,1,1,978,9225,360,1836,-2160,-450,-50,15,6,0,0,1 %N A123634 Upper half of Hankel determinant number wall for A004148. %F A123634 T(n, 0) = 1. T(n, 1) = a(n) if n>0, T(n, 2) = a(n+1)*a(n-1) - a(n)^2 if n>1, T(n, 3) = det([a(n-2), a(n-1), a(n); a(n-1), a(n), a(n+1); a(n), a(n+1), a(n+2)]) if n>2 where a(n) = A004148(n). %F A123634 T(n, n) = A046978(n+1). T(n+1, n) = A132380(n+2). - _Michael Somos_, Dec 31 2016 %e A123634 Table is: %e A123634 n\k 0 1 2 3 4 5 6 %e A123634 -- -- -- -- -- -- -- -- %e A123634 0 | 1 %e A123634 1 | 1 1 %e A123634 2 | 1 1 1 %e A123634 3 | 1 2 0 0 %e A123634 4 | 1 4 0 0 -1 %e A123634 5 | 1 8 4 -2 -1 -1 %e A123634 6 | 1 17 7 3 -3 -1 -1 %o A123634 (PARI) {T(n, k) = my(m); if( k<0 || k>n, 0, matdet( matrix(k, k, i, j, polcoeff( (1 - x + x^2 - sqrt(1 - 2*x - x^2 + x^3*(-2 + x + O(x^(m=i+j+n-k-1))))) / (2*x^2), m))))}; %Y A123634 Cf. A004148, A046978, A132380. %K A123634 sign,tabl %O A123634 0,8 %A A123634 _Michael Somos_, Oct 04 2006