A123740 Characteristic sequence for Wythoff AB-numbers A003623.
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1
Offset: 1
References
- See references under A000201.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michel Dekking and Michael Keane, On the conjugacy class of the Fibonacci dynamical system, arXiv preprint arXiv:1608.04487 [math.DS], 2016.
- Michel Dekking and Michael Keane, On the conjugacy class of the Fibonacci dynamical system, Theoretical Computer Science 668 (2017), 59-69.
- Jeffrey Shallit and Anatoly Zavyalov, Transduction of Automatic Sequences and Applications, arXiv:2303.15203 [cs.FL], 2023, see p. 31.
Crossrefs
Programs
-
Mathematica
a[] = 0; s = Table[n + 2 Floor[n*GoldenRatio], {n, 24}]; Map[Set[a[#], 1] &, s]; Array[a, Max[s]] (* _Michael De Vlieger, Mar 29 2023 *)
-
Python
from math import isqrt def A123740(n): return (n+2+isqrt(m:=5*(n+2)**2)>>1)-(n+isqrt(m-20*(n+1))>>1)-3 # Chai Wah Wu, Aug 29 2022
Formula
a(n) = 1-(1-h(n))-(1-h(n+1)) = h(n)-(1-h(n+1))= h(n)*h(n+1) with h(n):=A005614(n-1), n>=1, the rabbit sequence.
a(n) = A(n+2)-A(n)-3. - Wolfdieter Lang, Jun 27 2011
Comments