This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123742 #12 Aug 19 2025 08:14:24 %S A123742 1,-1,-2,48,30240,-1596672000,-18172937502720000, %T A123742 122457316443772566896640000,1284319496829094129116119090331648000000, %U A123742 -55603466527142141932748234118927499493985767915520000000 %N A123742 Certain Vandermonde determinants with Fibonacci numbers. %C A123742 The determinant of a Vandermonde matrix V_n with elements V_n[i,j]=(x_i)^(n-j), i,j,=1..n, is VdmI([x_1,...,x_n]) := Det(V_n)=product(x_i - x_j, 1<=i<j<=n) if n>=2. For n=1, Det(V_1)=1. The number of factors for n>=2 is n*(n-1)/2 = A000217(n-1) (triangular numbers). %C A123742 The signs are +1 for n=1 and (-1)^t(n) with the triangular numbers t(n):=A000217(n-1) for n>=2. Periodic pattern --++, from n=2 on. %C A123742 The recurrence below follows from the fact that ((-1)^(n-1))*A123741(n-1), n>=2, is the product of the factors of Det(V_n)/Det(V_(n-1)) in the Fibonacci case. %C A123742 See A203311 for the unsigned version. - _Clark Kimberling_, Jan 03 2012 %F A123742 a(n)=VdmI([F(2),F(3),...,F(n+1)]) := Det(V_n[i,j]) with the Vandermonde matrixelements V_n[i,j]:=F(i+1)^(n-j), i,j,=1..n and F(k):=A000045(k) (Fibonacci). %F A123742 Recurrence: a(n)= ((-1)^(n-1))* A123740(n-1)*a(n-1), a(2):=-1. a(1):=+1. %e A123742 n=4: V_4=matrix([1,1,1,1],[8,4,2,1],[27,9,3,1],[125,25,5,1]), a(4)=Det(V_4)=+48. %e A123742 n=4: +48 = a(4) = A123740(3)*a(3) = 24*2. %t A123742 (* See A203311. *) %Y A123742 Cf. A203311. %K A123742 sign,easy %O A123742 1,3 %A A123742 _Wolfdieter Lang_, Oct 13 2006