This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123746 #37 Feb 06 2024 14:28:48 %S A123746 1,1,7,9,107,151,835,1241,26291,40427,207897,327615,3296959,5293843, %T A123746 26189947,42685049,1666461763,2749521971,13266871709,22115585443, %U A123746 211386315749,355490397193,1684973959237,2855358497999,53747636888759 %N A123746 Numerators of partial sums of a series for 1/sqrt(2). %C A123746 Denominators are given by A046161(n),n>=0. %C A123746 The alternating sum over central binomial coefficients scaled by powers of 4, r(n) = Sum_{k=0..n} (-1)^k*binomial(2*k,k)/4^k, has the limit s = lim_{n->infinity} r(n) = 1/sqrt(2). From the expansion of 1/sqrt(1-x) for |x|<1 which extends to x=-1 due to Abel's limit theorem and the convergence of the series s. See the W. Lang link. %C A123746 (2^n)*n!*r(n) = A003148(n). - _Wolfdieter Lang_, Oct 06 2008 %H A123746 G. C. Greubel, <a href="/A123746/b123746.txt">Table of n, a(n) for n = 0..1000</a> %H A123746 Wolfdieter Lang, <a href="/A123746/a123746.txt">Rationals and more</a>. %H A123746 Michael Milgram, <a href="https://doi.org/10.13140/RG.2.2.23955.04648">An Extension of Glasser's Master Theorem and a Collection of Improper Integrals Many of Which Involve Riemann's Zeta Function</a>, ResearchGate, 2024. See p. 20. %F A123746 a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k* binomial(2*k,k)/4^k, n>=0. %F A123746 r(n) = Sum_{k=0..n} (-1)^k*(2*k-1)!!/(2*k)!!, n>=0, with the double factorials A001147 and A000165. %F A123746 r(n) = 1/sqrt(2) - binomial(-1/2, 1 + n)*hypergeom([1, 3/2 + n], [2 + n], -1). - _Peter Luschny_, Sep 26 2019 %e A123746 a(3)=9 because r(n)=1-1/2+3/8-5/16 = 9/16 = a(3)/A046161(3). %p A123746 A123746:=n-> numer(add(binomial(2*k,k)/(-4)^k, k=0..n)); seq(A123746(n), n=0..30); # _G. C. Greubel_, Aug 10 2019 %p A123746 a := n -> numer(add(binomial(-1/2, j), j=0..n)); %p A123746 seq(a(n), n=0..24); # _Peter Luschny_, Sep 26 2019 %t A123746 Table[Numerator[Sum[Binomial[2*k, k]/(-4)^k, {k,0,n}]], {n,0,30}] (* _G. C. Greubel_, Mar 28 2018 *) %o A123746 (PARI) {r(n) = sum(k=0,n,(-1/4)^k*binomial(2*k,k))}; %o A123746 vector(30, n, n--; numerator(r(n)) ) \\ _G. C. Greubel_, Mar 28 2018 %o A123746 (Magma) [Numerator( (&+[Binomial(2*k,k)/(-4)^k: k in [0..n]])): n in [0..30]]; // _G. C. Greubel_, Aug 10 2019 %o A123746 (Sage) [numerator( sum(binomial(2*k,k)/(-4)^k for k in (0..n)) ) for n in (0..30)] # _G. C. Greubel_, Aug 10 2019 %o A123746 (GAP) List([0..30], n-> NumeratorRat(Sum([0..n], k-> Binomial(2*k,k)/(-4)^k )) ); # _G. C. Greubel_, Aug 10 2019 %Y A123746 Cf. A120088/(2*A120777) partial sums for a series of sqrt(2). %Y A123746 Equals A003148 divided by A049606. - _Johannes W. Meijer_, Nov 23 2009 %K A123746 nonn,frac,easy %O A123746 0,3 %A A123746 _Wolfdieter Lang_, Nov 10 2006