cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123853 Numerators in an asymptotic expansion for the cubic recurrence sequence A123851.

This page as a plain text file.
%I A123853 #38 Feb 16 2025 08:33:03
%S A123853 1,3,-15,113,-5397,84813,-3267755,74391561,-15633072909,465681118929,
%T A123853 -31041303829713,1145088996404679,-185348722911971841,
%U A123853 8165727090278785521,-778296382754673737187,39898888480559205453945,-35033447016186321707305533
%N A123853 Numerators in an asymptotic expansion for the cubic recurrence sequence A123851.
%C A123853 A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Denominators are A123854.
%D A123853 Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
%H A123853 T. M. Apostol, <a href="https://projecteuclid.org/euclid.pjm/1103052188">On the Lerch zeta function</a>, Pacific J. Math. 1 (1951), 161-167. [In Eq. (3.7), p. 166, the index in the summation for the Apostol-Bernoulli numbers should start at s = 0, not at s = 1. - _Petros Hadjicostas_, Aug 09 2019]
%H A123853 Jonathan Sondow and Petros Hadjicostas, <a href="https://arxiv.org/abs/math/0610499">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, arXiv:math/0610499 [math.CA], 2006.
%H A123853 Jonathan Sondow and Petros Hadjicostas, <a href="https://doi.org/10.1016/j.jmaa.2006.09.081 ">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, J. Math. Anal. Appl. 332 (2007), 292-314.
%H A123853 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SomossQuadraticRecurrenceConstant.html">Somos's Quadratic Recurrence Constant</a>.
%H A123853 Aimin Xu, <a href="https://doi.org/10.1142/S1793042119501112">Asymptotic expansion related to the Generalized Somos Recurrence constant</a>, International Journal of Number Theory 15(10) (2019), 2043-2055. [The author gives recurrences and other formulas for the coefficients of the asymptotic expansion using the Apostol-Bernoulli numbers (see the reference above) and the Bell polynomials. - _Petros Hadjicostas_, Aug 09 2019]
%e A123853 A123851(n) ~ c^(3^n)*n^(-1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
%p A123853 f:=proc(t,x) exp(sum(ln(1+m*x)/t^m,m=1..infinity)); end; for j from 0 to 29 do numer(coeff(series(f(3,x),x=0,30),x,j)); od;
%o A123853 (PARI) {a(n) = local(A); if(n < 0, 0, A = 1 + O(x) ; for( k = 1, n, A = truncate(A) + x * O(x^k); A += x^k * polcoeff( 3/4 * (subst(1/A, x, x^2/(1-x^2))^2/(1-x^2) - 1/subst(A, x, x^2)^(2/3)), 2*k ) ); numerator( polcoeff( A, n ) ) ) } /* _Michael Somos_, Aug 23 2007 */
%Y A123853 Cf. A052129, A112302, A116603, A123851, A123852, A123854 (denominators).
%K A123853 frac,sign
%O A123853 0,2
%A A123853 _Petros Hadjicostas_ and _Jonathan Sondow_, Oct 15 2006