cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123854 Denominators in an asymptotic expansion for the cubic recurrence sequence A123851.

This page as a plain text file.
%I A123854 #62 Feb 16 2025 08:33:03
%S A123854 1,4,32,128,2048,8192,65536,262144,8388608,33554432,268435456,
%T A123854 1073741824,17179869184,68719476736,549755813888,2199023255552,
%U A123854 140737488355328,562949953421312,4503599627370496,18014398509481984,288230376151711744,1152921504606846976
%N A123854 Denominators in an asymptotic expansion for the cubic recurrence sequence A123851.
%C A123854 A cubic analog of the asymptotic expansion A116603 of Somos's quadratic recurrence sequence A052129. Numerators are A123853.
%C A123854 Equals 2^A004134(n); also the denominators in expansion of (1-x)^(-1/4). - _Alexander Adamchuk_, Oct 27 2006
%C A123854 All terms are powers of 2 and log_2 a(n) = A004134(n) = 3*n - A000120(n). - _Alexander Adamchuk_, Oct 27 2006 [Edited by _Petros Hadjicostas_, May 14 2020]
%C A123854 Is this the same sequence as A088802? - _N. J. A. Sloane_, Mar 21 2007
%C A123854 Almost certainly this is the same as A088802. - _Michael Somos_, Aug 23 2007
%C A123854 Denominators of Gegenbauer_C(2n,1/4,2). The denominators of Gegenbauer_C(n,1/4,2) give the doubled sequence. - _Paul Barry_, Apr 21 2009
%C A123854 If the Greubel formula in A088802 and the Luschny formula here are correct (they are the same), the sequence is a duplicate of A088802. - _R. J. Mathar_, Aug 02 2023
%D A123854 Steven R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.
%H A123854 G. C. Greubel, <a href="/A123854/b123854.txt">Table of n, a(n) for n = 0..1000</a>
%H A123854 T. M. Apostol, <a href="https://projecteuclid.org/euclid.pjm/1103052188">On the Lerch zeta function</a>, Pacific J. Math. 1 (1951), 161-167. [In Eq. (3.7), p. 166, the index in the summation for the Apostol-Bernoulli numbers should start at s = 0, not at s = 1. - _Petros Hadjicostas_, Aug 09 2019]
%H A123854 Jonathan Sondow and Petros Hadjicostas, <a href="http://arXiv.org/abs/math/0610499">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, arXiv:math/0610499 [math.CA], 2006.
%H A123854 Jonathan Sondow and Petros Hadjicostas, <a href="http://dx.doi.org/10.1016/j.jmaa.2006.09.081">The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant</a>, J. Math. Anal. Appl. 332 (2007), 292-314.
%H A123854 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SomossQuadraticRecurrenceConstant.html">Somos's Quadratic Recurrence Constant</a>.
%H A123854 Aimin Xu, <a href="https://doi.org/10.1142/S1793042119501112">Asymptotic expansion related to the Generalized Somos Recurrence constant</a>, International Journal of Number Theory 15(10) (2019), 2043-2055. [The author gives recurrences and other formulas for the coefficients of the asymptotic expansion using the Apostol-Bernoulli numbers (see the reference above) and the Bell polynomials. - _Petros Hadjicostas_, Aug 09 2019]
%F A123854 From _Alexander Adamchuk_, Oct 27 2006: (Start)
%F A123854 a(n) = 2^A004134(n).
%F A123854 a(n) = 2^(3n - A000120(n)). (End)
%F A123854 a(n) = denominator(binomial(1/4,n)). - _Peter Luschny_, Apr 07 2016
%e A123854 A123851(n) ~ c^(3^n)*n^(- 1/2)/(1 + 3/(4*n) - 15/(32*n^2) + 113/(128*n^3) - 5397/(2048*n^4) + ...) where c = 1.1563626843322... is the cubic recurrence constant A123852.
%p A123854 f:=proc(t,x) exp(sum(ln(1+m*x)/t^m,m=1..infinity)); end; for j from 0 to 29 do denom(coeff(series(f(3,x),x=0,30),x,j)); od;
%p A123854 # Alternatively:
%p A123854 A123854 := n -> denom(binomial(1/4,n)):
%p A123854 seq(A123854(n), n=0..25); # _Peter Luschny_, Apr 07 2016
%t A123854 Denominator[CoefficientList[Series[ 1/Sqrt[Sqrt[1-x]], {x, 0, 25}], x]] (* _Robert G. Wilson v_, Mar 23 2014 *)
%o A123854 (Sage) # uses[A000120]
%o A123854 def A123854(n): return 1 << (3*n-A000120(n))
%o A123854 [A123854(n) for n in (0..25)]  # _Peter Luschny_, Dec 02 2012
%o A123854 (PARI) vector(25, n, n--; denominator(binomial(1/4,n)) ) \\ _G. C. Greubel_, Aug 08 2019
%Y A123854 Cf. A052129, A112302, A116603, A123851, A123852, A123853 (numerators).
%Y A123854 Cf. A004134, A004130, A000120.
%K A123854 frac,nonn
%O A123854 0,2
%A A123854 _Petros Hadjicostas_ and _Jonathan Sondow_, Oct 15 2006