cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123915 Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an even number of 1's; EULER transform of A051841.

This page as a plain text file.
%I A123915 #10 Nov 19 2020 12:00:27
%S A123915 1,1,1,2,3,6,11,21,39,75,143,275,528,1020,1971,3821,7414,14419,28072,
%T A123915 54739,106847,208815,408470,799806,1567333,3073916,6032971,11848693,
%U A123915 23285202,45787650,90085410,177331748,349243800,688129474,1356433342,2674877358,5276869233
%N A123915 Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an even number of 1's; EULER transform of A051841.
%H A123915 Alois P. Heinz, <a href="/A123915/b123915.txt">Table of n, a(n) for n = 0..1000</a>
%F A123915 Prod_{n>=1} 1/(1-q^n)^A051841(n) = 1+sum_{n>=1} a(n) q^n.
%F A123915 a(n) ~ c * 2^n / sqrt(n), where c = 0.466342789995157602308480670781344540837057109916338560252870092619488755668... - _Vaclav Kotesovec_, May 31 2019
%e A123915 The binary words 00000, 01100, 00110, 01111, 00011, 00101 of length 5 decompose as 0*0*0*0*0, 011*0*0, 0011*0, 01111, 00011, 00101 and each subword has an even number of 1's, therefore a(5)=6.
%p A123915 with(numtheory):
%p A123915 b:= proc(n) option remember; add(igcd(d, 2)*
%p A123915       2^(n/d)*mobius(d), d=divisors(n))/(2*n)
%p A123915     end:
%p A123915 a:= proc(n) option remember; `if`(n=0, 1, add(add(
%p A123915       d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
%p A123915     end:
%p A123915 seq(a(n), n=0..40);  # _Alois P. Heinz_, Jul 28 2017
%t A123915 b[n_] := b[n] = Sum[GCD[d, 2] 2^(n/d) MoebiusMu[d], {d, Divisors[n]}]/(2n);
%t A123915 a[n_] := a[n] = If[n==0, 1, Sum[Sum[d b[d], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
%t A123915 a /@ Range[0, 40] (* _Jean-François Alcover_, Nov 19 2020, after _Alois P. Heinz_ *)
%Y A123915 Cf. A051841.
%K A123915 nonn
%O A123915 0,4
%A A123915 _Mike Zabrocki_, Oct 28 2006
%E A123915 a(0)=1 prepended by _Alois P. Heinz_, Jul 28 2017