cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123916 Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an odd number of 1's; EULER transform of A000048.

This page as a plain text file.
%I A123916 #21 Aug 16 2022 16:06:29
%S A123916 1,1,2,3,6,10,19,34,65,120,229,432,829,1583,3051,5874,11370,22012,
%T A123916 42756,83113,161917,315723,616588,1205232,2358604,4619485,9055960,
%U A123916 17766086,34880215,68524486,134707150,264960828,521449025
%N A123916 Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an odd number of 1's; EULER transform of A000048.
%H A123916 Vaclav Kotesovec, <a href="/A123916/b123916.txt">Table of n, a(n) for n = 1..700</a>
%F A123916 Prod_{n>=1} 1/(1-q^n)^A000048(n) = 1 + sum_{n>=1} a(n) q^n.
%F A123916 G.f. A(x) satisfies: A(x)^2 = A(x^2) / (1 - 2*x). - _Paul D. Hanna_, Apr 17 2016
%F A123916 a(n) ~ c * 2^n / sqrt(n), where c = 0.3412831644583761326654... . - _Vaclav Kotesovec_, Apr 18 2016
%F A123916 G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^2 * (v^2 - 2*u^2*v - u^4) + 2*w*u^4. - _Michael Somos_, Jun 27 2017
%e A123916 The binary words 1111, 1101, 1001, 0101, 0111, 0001 of length 4 decompose as 1*1*1*1, 1*1*01, 1*001, 01*01, 0111, 0001 and each subword has an odd number of 1's, therefore a(4)=6.
%e A123916 G.f. A(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 19*x^7 + 34*x^8 + ... such that A(x)^2 * (1 - 2*x) = A(x^2).
%o A123916 (PARI) /* G.f. A(x) satisfies: A(x)^2 = A(x^2)/(1 - 2*x) */
%o A123916 {a(n) = my(A=x); for(i=1,n, A = sqrt( subst(A,x, x^2)/(1 - 2*x +x*O(x^n)))); polcoeff(A,n)}
%o A123916 for(n=1,50, print1(a(n),", ")) \\ _Paul D. Hanna_, Apr 17 2016
%o A123916 (PARI) /* As the EULER transform of A000048 */
%o A123916 {A000048(n) = sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n)} \\ _Michael B. Porter_
%o A123916 {a(n) = polcoeff( prod(k=1,n, 1/(1 - x^k +x*O(x^n))^A000048(k)), n-1)}
%o A123916 for(n=1,50, print1(a(n),", ")) \\ _Paul D. Hanna_, Apr 17 2016
%Y A123916 Cf. A000048, A271929.
%K A123916 nonn
%O A123916 1,3
%A A123916 _Mike Zabrocki_, Oct 28 2006