cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123922 Number of 2143-avoiding Dumont paths of the 2nd kind of length 2n.

Original entry on oeis.org

1, 1, 2, 6, 21, 84, 360, 1650, 7865, 39039, 198744, 1039584, 5534928, 30046752, 165257136, 922280634, 5199131025, 29644168125, 170375955750, 988180543350, 5768664340725, 33927954699600, 200617471267200, 1193673954039840
Offset: 0

Views

Author

R. J. Mathar, Nov 20 2006

Keywords

Examples

			For n=2, there are 3 Dumont permutations of the 2nd kind of length 2n=4, namely {2143,3142,4132}.
Avoiding 2143, the cardinality of this set is reduced to a(2)=2.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := If[EvenQ[n], Binomial[3n/2, n/2]/(n+1), Binomial[(3n-1)/2, (n+1)/2 ]/n];
    a[n_] := b[n] b[n+1];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 27 2018 *)
  • PARI
    A047749(n)={ my(m=floor(n/2)); if(n % 2, binomial(3*m+1,m+1)/(2*m+1), binomial(3*m,m)/(2*m+1)); }
    a(n)={ A047749(n)*A047749(n+1); }

Formula

a(n) = A047749(n)*A047749(n+1).
Conjecture: 16*n*(n+2)*(n+1)^2*a(n) -108*n*(n+1)*(2*n-1)*a(n-1) -9*(3*n-5)*(3*n-1)*(3*n-4)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jan 25 2013