A123922 Number of 2143-avoiding Dumont paths of the 2nd kind of length 2n.
1, 1, 2, 6, 21, 84, 360, 1650, 7865, 39039, 198744, 1039584, 5534928, 30046752, 165257136, 922280634, 5199131025, 29644168125, 170375955750, 988180543350, 5768664340725, 33927954699600, 200617471267200, 1193673954039840
Offset: 0
Examples
For n=2, there are 3 Dumont permutations of the 2nd kind of length 2n=4, namely {2143,3142,4132}. Avoiding 2143, the cardinality of this set is reduced to a(2)=2.
Links
- A. Burstein, S. Elizalde and T. Mansour, Restricted Dumont Permutations, Dyck Paths and Noncrossing Partitions, arXiv:math/0610234 [math.CO], 2006.
Programs
-
Mathematica
b[n_] := If[EvenQ[n], Binomial[3n/2, n/2]/(n+1), Binomial[(3n-1)/2, (n+1)/2 ]/n]; a[n_] := b[n] b[n+1]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 27 2018 *)
-
PARI
A047749(n)={ my(m=floor(n/2)); if(n % 2, binomial(3*m+1,m+1)/(2*m+1), binomial(3*m,m)/(2*m+1)); } a(n)={ A047749(n)*A047749(n+1); }
Formula
Conjecture: 16*n*(n+2)*(n+1)^2*a(n) -108*n*(n+1)*(2*n-1)*a(n-1) -9*(3*n-5)*(3*n-1)*(3*n-4)*(3*n-2)*a(n-2)=0. - R. J. Mathar, Jan 25 2013